Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis

Beitrag in einer Fachzeitschrift


Details zur Publikation

Autorinnen und Autoren: Motwani M, Dey D, Berman DS, Germano G, Achenbach S, Al-Mallah MH, Andreini D, Budoff MJ, Cademartiri F, Callister TQ, Chang HJ, Chinnaiyan K, Chow BJW, Cury RC, Delago A, Gomez M, Gransar H, Hadamitzky M, Hausleiter J, Hindoyan N, Feuchtner G, Kaufmann PA, Kim YJ, Leipsic J, Lin FY, Maffei E, Marques H, Pontone G, Raff G, Rubinshtein R, Shaw LJ, Stehli J, Villines TC, Dunning A, Min JK, Slomka PJ
Zeitschrift: European Heart Journal
Jahr der Veröffentlichung: 2017
Band: 38
Heftnummer: 7
Seitenbereich: 500-507
ISSN: 0195-668X
eISSN: 1522-9645


Abstract

Aims: Traditional prognostic risk assessment in patients undergoing non-invasive imaging is based upon a limited selection of clinical and imaging findings. Machine learning (ML) can consider a greater number and complexity of variables. Therefore, we investigated the feasibility and accuracy of ML to predict 5-year all-cause mortality (ACM) in patients undergoing coronary computed tomographic angiography (CCTA), and compared the performance to existing clinical or CCTA metrics.
Methods and results: The analysis included 10 030 patients with suspected coronary artery disease and 5-year follow-up from the COronary CT Angiography EvaluatioN For Clinical Outcomes: An InteRnational Multicenter registry. All patients underwent CCTA as their standard of care. Twenty-five clinical and 44 CCTA parameters were evaluated, including segment stenosis score (SSS), segment involvement score (SIS), modified Duke index (DI), number of segments with non-calcified, mixed or calcified plaques, age, sex, gender, standard cardiovascular risk factors, and Framingham risk score (FRS). Machine learning involved automated feature selection by information gain ranking, model building with a boosted ensemble algorithm, and 10-fold stratified cross-validation. Seven hundred and forty-five patients died during 5-year follow-up. Machine learning exhibited a higher area-under-curve compared with the FRS or CCTA severity scores alone (SSS, SIS, DI) for predicting all-cause mortality (ML: 0.79 vs. FRS: 0.61, SSS: 0.64, SIS: 0.64, DI: 0.62; P< 0.001).
Conclusions: Machine learning combining clinical and CCTA data was found to predict 5-year ACM significantly better than existing clinical or CCTA metrics alone.


FAU-Autorinnen und Autoren / FAU-Herausgeberinnen und Herausgeber

Achenbach, Stephan Prof. Dr. med.
Medizinische Klinik 2 - Kardiologie, Angiologie


Einrichtungen weiterer Autorinnen und Autoren

Baptist Health South Florida
Beaumont Health System
Capitol Cardiology Associates
Cedars-Sinai Medical Center
Cornell University
Deutsches Herzzentrum München
Duke University Medical Center
Emory University
Harbor–UCLA Medical Center
Hospital da Luz
Istituto di ricovero e cura a carattere scientifico (IRCCS)
King Abdullah International Medical Research Center (KAIMRC)
Ludwig-Maximilians-Universität (LMU)
Medizinische Universität Innsbruck
New York Presbyterian Hospital
Seoul National University (SNU) / 서울대학교
Technion - Israel Institute of Technology
Tennessee Heart & Vascular
Università degli studi di Milano
Universitätsspital Zürich (USZ)
Université de Montréal
University of British Columbia
University of Ottawa
Walter Reed Army Medical Center (WRAMC)
Yonsei University Health System (YUHS)


Zitierweisen

APA:
Motwani, M., Dey, D., Berman, D.S., Germano, G., Achenbach, S., Al-Mallah, M.H.,... Slomka, P.J. (2017). Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. European Heart Journal, 38(7), 500-507. https://dx.doi.org/10.1093/eurheartj/ehw188

MLA:
Motwani, Manish, et al. "Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis." European Heart Journal 38.7 (2017): 500-507.

BibTeX: 

Zuletzt aktualisiert 2019-26-07 um 09:04