A posteriori error estimates for fully discrete schemes for the time dependent Stokes problem

Beitrag in einer Fachzeitschrift
(Originalarbeit)


Details zur Publikation

Autor(en): Bänsch E, Karakatsani F, Makridakis C
Zeitschrift: Calcolo
Verlag: SPRINGER-VERLAG ITALIA SRL
Jahr der Veröffentlichung: 2018
Band: 55
Heftnummer: 2
ISSN: 0008-0624
Sprache: Englisch


Abstract

This work is devoted to a posteriori error analysis of fully discrete finite element approximations to the time dependent Stokes system. The space discretization is based on popular stable spaces, including Crouzeix-Raviart and Taylor-Hood finite element methods. Implicit Euler is applied for the time discretization. The finite element spaces are allowed to change with time steps and the projection steps include alternatives that is hoped to cope with possible numerical artifices and the loss of the discrete incompressibility of the schemes. The final estimates are of optimal order in L-infinity(L-2) for the velocity error.


FAU-Autoren / FAU-Herausgeber

Bänsch, Eberhard Prof. Dr.
Lehrstuhl für Angewandte Mathematik


Autor(en) der externen Einrichtung(en)
University of Crete
University of Cyprus (UCY) / Πανεπιστήμιο Κύπρου


Zitierweisen

APA:
Bänsch, E., Karakatsani, F., & Makridakis, C. (2018). A posteriori error estimates for fully discrete schemes for the time dependent Stokes problem. Calcolo, 55(2). https://dx.doi.org/10.1007/s10092-018-0259-2

MLA:
Bänsch, Eberhard, F. Karakatsani, and Charalambos Makridakis. "A posteriori error estimates for fully discrete schemes for the time dependent Stokes problem." Calcolo 55.2 (2018).

BibTeX: 

Zuletzt aktualisiert 2019-05-01 um 06:10