Electrifying model catalysts for understanding electrocatalytic reactions in liquid electrolytes

Journal article


Publication Details

Author(s): Faisal F, Stumm C, Bertram M, Waidhas F, Lykhach Y, Cherevko S, Xiang F, Ammon M, Vorokhta M, Smid B, Skala T, Tsud N, Neitzel A, Beranova K, Prince KC, Geiger S, Kasian O, Wähler T, Schuster R, Schneider MA, Matolin V, Mayrhofer KJJ, Brummel O, Libuda J
Journal: Nature Materials
Publisher: NATURE PUBLISHING GROUP
Publication year: 2018
Volume: 17
Journal issue: 7
Pages range: 592-+
ISSN: 1476-1122


Abstract

Electrocatalysis is at the heart of our future transition to a renewable energy system. Most energy storage and conversion technologies for renewables rely on electrocatalytic processes and, with increasing availability of cheap electrical energy from renewables, chemical production will witness electrification in the near future(1-3). However, our fundamental understanding of electrocatalysis lags behind the field of classical heterogeneous catalysis that has been the dominating chemical technology for a long time. Here, we describe a new strategy to advance fundamental studies on electrocatalytic materials. We propose to 'electrify' complex oxide-based model catalysts made by surface science methods to explore electrocatalytic reactions in liquid electrolytes. We demonstrate the feasibility of this concept by transferring an atomically defined platinum/cobalt oxide model catalyst into the electrochemical environment while preserving its atomic surface structure. Using this approach, we explore particle size effects and identify hitherto unknown metal-support interactions that stabilize oxidized platinum at the nanoparticle interface. The metal-support interactions open a new synergistic reaction pathway that involves both metallic and oxidized platinum. Our results illustrate the potential of the concept, which makes available a systematic approach to build atomically defined model electrodes for fundamental electrocatalytic studies.


FAU Authors / FAU Editors

Ammon, Maximilian
Lehrstuhl für Festkörperphysik
Bertram, Manon
Lehrstuhl für Physikalische Chemie II
Brummel, Olaf Dr.
Lehrstuhl für Physikalische Chemie II
Faisal, Firas
Lehrstuhl für Physikalische Chemie II
Libuda, Jörg Prof. Dr.
Professur für Physikalische Chemie
Lykhach, Yaroslava
Lehrstuhl für Physikalische Chemie II
Neitzel, Armin
Lehrstuhl für Physikalische Chemie II
Schneider, M. Alexander Prof. Dr.
Professur für Experimentalphysik
Schuster, Ralf
Professur für Physikalische Chemie
Stumm, Corinna
Lehrstuhl für Physikalische Chemie II
Wähler, Tobias
Lehrstuhl für Physikalische Chemie II
Waidhas, Fabian
Lehrstuhl für Physikalische Chemie II
Xiang, Feifei
Lehrstuhl für Festkörperphysik


Additional Organisation
Exzellenz-Cluster Engineering of Advanced Materials


External institutions with authors

Elettra Sincrotrone Trieste S.C.p.A.
Max-Planck-Institut für Eisenforschung GmbH (MPIE) / Max Planck Institute for Iron Research
Univerzita Karlova v Praze / Charles University in Prague


Research Fields

D Catalytic Materials
Exzellenz-Cluster Engineering of Advanced Materials


How to cite

APA:
Faisal, F., Stumm, C., Bertram, M., Waidhas, F., Lykhach, Y., Cherevko, S.,... Libuda, J. (2018). Electrifying model catalysts for understanding electrocatalytic reactions in liquid electrolytes. Nature Materials, 17(7), 592-+. https://dx.doi.org/10.1038/s41563-018-0088-3

MLA:
Faisal, Firas, et al. "Electrifying model catalysts for understanding electrocatalytic reactions in liquid electrolytes." Nature Materials 17.7 (2018): 592-+.

BibTeX: 

Last updated on 2018-01-09 at 07:12