Mixed-Integer Programming Techniques for the Connected Max-k-Cut Problem

Weiterer Publikationstyp


Details zur Publikation

Autor(en): Hojny C, Joormann I, Lüthen H, Schmidt M
Jahr der Veröffentlichung: 2018
Sprache: Englisch


Abstract

We consider an extended version of the classical Max-k-Cut problem in which we additionally require that the parts of the graph partition are connected. For this problem we study two alternative mixed-integer linear formulations and review existing as well as develop new branch-and-cut techniques like cuts, branching rules, propagation, primal heuristics, and symmetry breaking. The main focus of this paper is an extensive numerical study in which we analyze the impact of the different techniques for various test sets. It turns out that the techniques from the existing literature are not sufficient to solve an adequate fraction of the test sets. However, our novel techniques significantly outperform the existing ones both in terms of running times and the overall number of instances that can be solved.


FAU-Autoren / FAU-Herausgeber

Schmidt, Martin Prof. Dr.
Juniorprofessur für Optimierung von Energiesystemen


Autor(en) der externen Einrichtung(en)
Technische Universität Braunschweig
Technische Universität Darmstadt


Zitierweisen

APA:
Hojny, C., Joormann, I., Lüthen, H., & Schmidt, M. (2018). Mixed-Integer Programming Techniques for the Connected Max-k-Cut Problem.

MLA:
Hojny, Christopher, et al. Mixed-Integer Programming Techniques for the Connected Max-k-Cut Problem. 2018.

BibTeX: 

Zuletzt aktualisiert 2018-26-07 um 15:53