Crystallization of sensitizers controls morphology and performance in Si-/C-PCPDTBT-sensitized P3HT: ICBA ternary blends

Journal article
(Original article)


Publication Details

Author(s): Du X, Jiao X, Rechberger S, Perea Ospina JD, Meyer M, Kazerouni N, Spiecker E, Ade H, Brabec C, Fink R, Ameri T
Journal: Macromolecules
Publication year: 2017
Volume: 50
Journal issue: 6
Pages range: 2415-2423
ISSN: 0024-9297
Language: English


Abstract


Organic solar cells based on multinary components are promising to further boost the device performance. The complex interplay of the morphology and functionality needs further investigations. Here, we report on a systematic study on the morphology evolution of prototype ternary systems upon adding sensitizers featuring similar chemical structures but dramatically different crystallinity, namely poly(3-hexylthiophene) (P3HT) and indene-C-bis-adduct (ICBA) blends with poly[(4,4′-bis(2-ethylhexyl)dithieno[3,2-b:2′,3′-d]silole)-2,6-diyl-alt-(4,7-bis(2-thienyl)-2,1,3-benzothiadi-azole)-5,5′-diyl] (Si-PCPDTBT) and poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (C-PCPDTBT), employing energy-filtered transmission electron microscopy (EFTEM) and resonant soft X-ray scattering (RSoXS). In addition, a combined density functional theory (DFT) and artificial neuronal network (ANN) computational approach has been utilized to calculate the solubility parameters and Flory-Huggins intermolecular parameters to evaluate the influence of miscibility on the final morphology. Our experiments reveal that the domain spacing and purity of ICBA-rich domains are retained in Si-PCPDTBT-based systems but are strongly reduced in C-PCPDTBT-based ternary systems. The P3HT fiber structure are retained at low sensitizer content but dramatically reduced at high sensitizer content. The theoretical calculations reveal very similar miscibility/compatibility between the two sensitizers and ICBA as well as P3HT. Thus, we conclude that mainly the crystallization of Si-PCPDTBT drives the nanostructure evolution in the ternary systems, while this driving force is absent in C-PCPDTBT-based ternary blends.



FAU Authors / FAU Editors

Ameri, Tayebeh Dr.
Institute Materials for Electronics and Energy Technology (i-MEET)
Brabec, Christoph Prof. Dr.
Institute Materials for Electronics and Energy Technology (i-MEET)
Du, Xiaoyan
Lehrstuhl für Physikalische Chemie II
Fink, Rainer Prof. Dr.
Professur für Physikalische Chemie
Kazerouni, Negar
Institute Materials for Electronics and Energy Technology (i-MEET)
Meyer, Markus
Professur für Physikalische Chemie
Perea, Jose Dario
Institute Materials for Electronics and Energy Technology (i-MEET)
Rechberger, Stefanie Dr.
Lehrstuhl für Werkstoffwissenschaften (Mikro- und Nanostrukturforschung)
Spiecker, Erdmann Prof. Dr.
Lehrstuhl für Werkstoffwissenschaften (Mikro- und Nanostrukturforschung)


Additional Organisation
Graduiertenkolleg 1896/2 In situ Mikroskopie mit Elektronen, Röntgenstrahlen und Rastersonden


External institutions
North Carolina State University


How to cite

APA:
Du, X., Jiao, X., Rechberger, S., Perea Ospina, J.D., Meyer, M., Kazerouni, N.,... Ameri, T. (2017). Crystallization of sensitizers controls morphology and performance in Si-/C-PCPDTBT-sensitized P3HT: ICBA ternary blends. Macromolecules, 50(6), 2415-2423. https://dx.doi.org/10.1021/acs.macromol.6b02699

MLA:
Du, Xiaoyan, et al. "Crystallization of sensitizers controls morphology and performance in Si-/C-PCPDTBT-sensitized P3HT: ICBA ternary blends." Macromolecules 50.6 (2017): 2415-2423.

BibTeX: 

Last updated on 2018-02-08 at 09:36