Series vs parallel connected organic tandem solar cells: Cell performance and impact on the design and operation of functional modules

Beitrag in einer Fachzeitschrift
(Originalarbeit)


Details zur Publikation

Autorinnen und Autoren: Etxebarria I, Furlan A, Ajuria J, Fecher FW, Voigt M, Brabec C, Wienk MM, Slooff L, Veenstra S, Gilot J, Pacios R
Zeitschrift: Solar Energy Materials and Solar Cells
Verlag: Elsevier
Jahr der Veröffentlichung: 2014
Band: 130
Seitenbereich: 495-504
ISSN: 0927-0248
Sprache: Englisch


Abstract


Tandem solar cells are the best approach to maximize the light harvesting and adjust the overall absorption of the cell to the solar irradiance spectrum. Usually, the front and back subcells are connected in series in two-terminal device (2T) designs which require a current matching between both subcells in order to avoid potential losses. Alternatively, they can also be connected in parallel giving rise to a three terminal connection (3T). In principle, both designs have their assets and drawbacks in terms of device performance, design and materials' characterization. In this letter, we theoretically and experimentally confront both designs with each other (2T and 3T). Theoretical estimations show a maximum PCE of 15% for 2T and about 13% for 3T structures with ideal bandgaps for the front and back cell. However, 3T tandem devices can yield higher efficiencies than 2T for some specific material combinations whose theoretical values are between 10% and 12%. Therefore, other aspects related to the fabrication feasibility are studied in order to analyze the most convenient approach for module development. The need of a conducting interlayer restricts the width of the cell and causes a 3% reduction in the geometrical fill factor of the module in comparison to the 2T approach. The R2R processing of modules with 3T cells would also require an additional laser step. Finally, a couple of existing material combinations have been experimentally implemented into 2T and 3T tandem devices. The limitation imposed by their specific and non-ideal bandgaps restricts the efficiency to around 7%, considerably below the ideal case. © 2014 Elsevier B.V.



FAU-Autorinnen und Autoren / FAU-Herausgeberinnen und Herausgeber

Brabec, Christoph Prof. Dr.
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Voigt, Monika Dr.
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)


Einrichtungen weiterer Autorinnen und Autoren

Bayerisches Zentrum für Angewandte Energieforschung e.V. (ZAE Bayern)
Eindhoven University of Technology / Technische Universiteit Eindhoven (TU/e)
Energy research Centre of the Netherlands (ECN)
Holst Centre
IK4-Ikerlan


Zitierweisen

APA:
Etxebarria, I., Furlan, A., Ajuria, J., Fecher, F.W., Voigt, M., Brabec, C.,... Pacios, R. (2014). Series vs parallel connected organic tandem solar cells: Cell performance and impact on the design and operation of functional modules. Solar Energy Materials and Solar Cells, 130, 495-504. https://dx.doi.org/10.1016/j.solmat.2014.07.047

MLA:
Etxebarria, Ikerne, et al. "Series vs parallel connected organic tandem solar cells: Cell performance and impact on the design and operation of functional modules." Solar Energy Materials and Solar Cells 130 (2014): 495-504.

BibTeX: 

Zuletzt aktualisiert 2018-28-11 um 20:50