Transfer Function Models for Distributed-Parameter Systems with Impedance Boundary Conditions

Journal article
(Original article)


Publication Details

Author(s): Rabenstein R, Schäfer M, Strobl C
Journal: International Journal of Control
Publication year: 2018
Volume: 91
Journal issue: 12
Pages range: 2726-2742
ISSN: 1366-5820
Language: English


Abstract

A transfer function description is derived for a general class of linear
distributed parameter systems dependent on time and one spatial
variable. Suitable functional transformations are the Laplace
transformation for the time variable and the Sturm–Liouville
transformation for the space variable. A practical problem is the
determination of the eigenfunctions of the Sturm–Liouville
transformation since these depend on the type and the parameters of the
boundary conditions. This contribution shows that the design of a
transfer function model can be separated from the correct treatment of
the boundary conditions. The presented approach exhibits strong
parallels to state feedback techniques from control theory. Examples for
an electrical transmission line demonstrate how terminations with
arbitrary complex impedances can be considered without redesigning the
transmission line model.


FAU Authors / FAU Editors

Rabenstein, Rudolf Prof. Dr.
Lehrstuhl für Multimediakommunikation und Signalverarbeitung
Schäfer, Maximilian
Lehrstuhl für Multimediakommunikation und Signalverarbeitung


External institutions
E-T-A Elektrotechnische Apparate GmbH


How to cite

APA:
Rabenstein, R., Schäfer, M., & Strobl, C. (2018). Transfer Function Models for Distributed-Parameter Systems with Impedance Boundary Conditions. International Journal of Control, 91(12), 2726-2742. https://dx.doi.org/10.1080/00207179.2017.1397753

MLA:
Rabenstein, Rudolf, Maximilian Schäfer, and Christian Strobl. "Transfer Function Models for Distributed-Parameter Systems with Impedance Boundary Conditions." International Journal of Control 91.12 (2018): 2726-2742.

BibTeX: 

Last updated on 2019-28-02 at 13:50