Multielectron redox chemistry of iron porphyrinogens

Bachmann J (2005)


Publication Status: Published

Publication Type: Journal article, Original article

Publication year: 2005

Journal

Publisher: American Chemical Society

Book Volume: 127

Pages Range: 4730-4743

DOI: 10.1021/ja043132r

Abstract

Iron octamethylporphyrinogens were prepared and structurally characterized in three different oxidation states in the absence of axial ligands and with sodium or tetrafluoroborate as the only counterions. Under these conditions, the iron- and ligand-based redox chemistry of iron porphyrinogens can be defined. The iron center is easily oxidized by a single electron (E-1/2 = -0.57 V vs NHE in CH3CN) when confined within the fully reduced macrocycle. The porphyrinogen ligand also undergoes oxidation but in a single four-electron step (E-P = +0.77 V vs NHE in CH3CN); one of the ligand-based electrons is intercepted for the reduction of Fe(III) to Fe(II) to result in an overall three-electron oxidation process. The oxidation equivalents in the macrocycle are stored in C-alpha-C-alpha bonds of spirocyclopropane rings, formed between adjacent pyrroles. EPR, magnetic and Mossbauer measurements, and DFT computations of the redox states of the iron porphyrinogens reveal that the reduced ligand gives rise to iron in intermediate spin states, whereas the fully oxidized ligand possesses a weaker a-donor framework, giving rise to high-spin iron. Taken together, the results reported herein establish a metal -macrocycle cooperativity that engenders a multielectron chemistry for iron porphyrinogens that is unavailable to heme cofactors.

Authors with CRIS profile

How to cite

APA:

Bachmann, J. (2005). Multielectron redox chemistry of iron porphyrinogens. Journal of the American Chemical Society, 127, 4730-4743. https://doi.org/10.1021/ja043132r

MLA:

Bachmann, Julien. "Multielectron redox chemistry of iron porphyrinogens." Journal of the American Chemical Society 127 (2005): 4730-4743.

BibTeX: Download