Cell Wall-Bound Invertase Limits Sucrose Export and Is Involved in Symptom Development and Inhibition of Photosynthesis during Compatible Interaction between Tomato and Xanthomonas campestris pv vesicatoria

Journal article


Publication Details

Author(s): Kocal N, Sonnewald U, Sonnewald S
Journal: Plant Physiology
Publisher: AMER SOC PLANT BIOLOGISTS
Publication year: 2008
Volume: 148
Journal issue: 3
Pages range: 1523-1536
ISSN: 0032-0889


Abstract


Cell wall-bound invertase (cw-Inv) plays an important role in carbohydrate partitioning and regulation of sink-source interaction. There is increasing evidence that pathogens interfere with sink-source interaction, and induction of cw-Inv activity has frequently been shown in response to pathogen infection. To investigate the role of cw-Inv, transgenic tomato (Solanum lycopersicum) plants silenced for the major leaf cw-Inv isoforms were generated and analyzed during normal growth and during the compatible interaction with Xanthomonas campestris pv vesicatoria. Under normal growth conditions, activities of sucrolytic enzymes as well as photosynthesis and respiration were unaltered in the transgenic plants compared with wild-type plants. However, starch levels of source leaves were strongly reduced, which was most likely caused by an enhanced sucrose exudation rate. Following X. campestris pv vesicatoria infection, cw-Inv-silenced plants showed an increased sucrose to hexose ratio in the apoplast of leaves. Symptom development, inhibition of photosynthesis, and expression of photosynthetic genes were clearly delayed in transgenic plants compared with wild-type plants. In addition, induction of senescence-associated and pathogenesis-related genes observed in infected wild-type plants was abolished in cw-Inv-silenced tomato lines. These changes were not associated with decreased bacterial growth. In conclusion, cw-Inv restricts carbon export from source leaves and regulates the sucrose to hexose ratio in the apoplast. Furthermore, an increased apoplastic hexose to sucrose ratio can be linked to inhibition of photosynthesis and induction of pathogenesis-related gene expression but does not significantly influence bacterial growth. Indirectly, bacteria may benefit from low invertase activity, since the longevity of host cells is raised and basal defense might be dampened.



FAU Authors / FAU Editors

Sonnewald, Sophia PD Dr.
Lehrstuhl für Biochemie
Sonnewald, Uwe Prof. Dr.
Lehrstuhl für Biochemie


How to cite

APA:
Kocal, N., Sonnewald, U., & Sonnewald, S. (2008). Cell Wall-Bound Invertase Limits Sucrose Export and Is Involved in Symptom Development and Inhibition of Photosynthesis during Compatible Interaction between Tomato and Xanthomonas campestris pv vesicatoria. Plant Physiology, 148(3), 1523-1536. https://dx.doi.org/10.1104/pp.108.127977

MLA:
Kocal, Nurcan, Uwe Sonnewald, and Sophia Sonnewald. "Cell Wall-Bound Invertase Limits Sucrose Export and Is Involved in Symptom Development and Inhibition of Photosynthesis during Compatible Interaction between Tomato and Xanthomonas campestris pv vesicatoria." Plant Physiology 148.3 (2008): 1523-1536.

BibTeX: 

Last updated on 2018-10-08 at 21:30