When do microswimmers exit the Stokes regime

Other publication type


Publication Details

Author(s): Pickl K, Köstler H, Pande J, Smith AS, Rüde U
Publishing place: arXiv publication
Publication year: 2016
Language: English


Abstract


We compare fully-resolved, 3D lattice Boltzmann (LB) simulations of a three sphere microswimmer to analytical calculations, and show thereby that (i) LB simulations reproduce the motion very well in the Stokes regime, and (ii) the swimmer exits this regime at Reynolds numbers Re ∼ 10−2 , significantly lower than previously realised. Below this Re value Stokesian theory describes the motion accurately, but fails above it due to inertial effects. In the latter case, the swimmer’s relaxation matches that of an underdamped harmonic oscillator, and this specifies its effective hydrodynamic radius in a narrow Re range, as we show by calculating the radius analytically. The method can be used to determine the limit of the Stokes regime and the effective radius for a general mechanical microswimmer.



FAU Authors / FAU Editors

Köstler, Harald PD Dr.-Ing.
Lehrstuhl für Informatik 10 (Systemsimulation)
Pande, Jayant
Professur für Theoretische Physik
Pickl, Kristina
Lehrstuhl für Informatik 10 (Systemsimulation)
Rüde, Ulrich Prof. Dr.
Lehrstuhl für Informatik 10 (Systemsimulation)
Smith, Ana-Suncana Prof. Dr.
Professur für Theoretische Physik


How to cite

APA:
Pickl, K., Köstler, H., Pande, J., Smith, A.-S., & Rüde, U. (2016). When do microswimmers exit the Stokes regime. arXiv publication.

MLA:
Pickl, Kristina, et al. When do microswimmers exit the Stokes regime. arXiv publication, 2016.

BibTeX: 

Last updated on 2018-19-04 at 03:23