Analysis of the structure of nanocomposites of triglyceride platelets and DNA

Journal article

Publication Details

Author(s): Schmiele M, Knittel C, Unruh T, Busch S, Morhenn H, Boesecke P, Funari SS, Schweins R, Lindner P, Westermann M, Steiniger F
Journal: Physical Chemistry Chemical Physics
Publication year: 2015
Volume: 17
Journal issue: 27
Pages range: 17939-17956
ISSN: 1463-9076
eISSN: 1463-9084


DNA-complexes with platelet-like, cationically modified lipid nanoparticles (cLNPs) are studied with regard to the formation of nanocomposite structures with a sandwich-like arrangement of the DNA and platelets. For this purpose suspensions of platelet-like triglyceride nanocrystals, stabilized by a mixture of two nonionic (lecithin plus polysorbate 80 or poloxamer 188) and one cationic stabilizer dimethyldioctadecylammonium (DODAB), are used. The structure of the platelets in the native suspensions and their DNA-complexes, ranging from the sub-nano to the micron scale, is investigated with small- and wide-angle scattering (SAXS, SANS, WAXS), calorimetry, photon correlation spectroscopy, transmission electron microscopy and computer simulations. The appearance of strong, lamellarly ordered peaks in the SAXS patterns of the DNA-complexes suggests a stacked arrangement of the nanocrystals, with the DNA being partially condensed between the platelets. This finding is supported with computer simulated small-angle scattering patterns of nanocrystal stacks, which can reproduce the measured small-angle scattering patterns on an absolute scale. The influence of the choice of the nonionic stabilizers and the amount of the cationic stabilizer DODAB on the structure of the native suspensions and the inner structure of their DNA-complexes is studied, too. Using high amounts of DODAB, lecithins with saturated acyl chains and polysorbate 80 instead of poloxamer 188 produces thinner nanocrystals, and thus decreases their repeat distances in the nanocomposites. Such nanocomposites could be of interest as DNA carriers, where the triglyceride platelets protect the sandwiched DNA from degradation.

FAU Authors / FAU Editors

Schmiele, Martin
Professur für Nanomaterialcharakterisierung (Streumethoden)
Unruh, Tobias Prof. Dr.
Professur für Nanomaterialcharakterisierung (Streumethoden)

Additional Organisation
Exzellenz-Cluster Engineering of Advanced Materials

External institutions with authors

Deutsches Elektronen-Synchrotron DESY
European Synchrotron Radiation Facility (ESRF)
Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM I / II)
Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH (HZG)
Institute Laue-Langevin (ILL)
Universitätsklinikum Jena

Research Fields

A2 Nanoanalysis and Microscopy
Exzellenz-Cluster Engineering of Advanced Materials

How to cite

Schmiele, M., Knittel, C., Unruh, T., Busch, S., Morhenn, H., Boesecke, P.,... Steiniger, F. (2015). Analysis of the structure of nanocomposites of triglyceride platelets and DNA. Physical Chemistry Chemical Physics, 17(27), 17939-17956.

Schmiele, Martin, et al. "Analysis of the structure of nanocomposites of triglyceride platelets and DNA." Physical Chemistry Chemical Physics 17.27 (2015): 17939-17956.


Last updated on 2018-08-08 at 13:23