An efficient solution-processed intermediate layer for facilitating fabrication of organic multi-junction solar cells

Beitrag in einer Fachzeitschrift
(Originalarbeit)


Details zur Publikation

Autorinnen und Autoren: Li N, Baran D, Forberich K, Turbiez M, Ameri T, Krebs FC, Brabec C
Zeitschrift: Advanced Energy Materials
Jahr der Veröffentlichung: 2013
Band: 3
Heftnummer: 12
Seitenbereich: 1597-1605
ISSN: 1614-6832
eISSN: 1614-6840
Sprache: Englisch


Abstract


Photovoltaic tandem technology has the potential to boost the power conversion efficiency of organic photovoltaic devices. Here, a reliable and efficient fully solution-processed intermediate layer (IML) consisting of ZnO and neutralized poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is demonstrated for series-connected multi-junction organic solar cells (OSCs). Drying at 80°C in air is sufficient for this solution-processed IML to obtain excellent functionality and reliability, which allow the use of most of high performance donor materials in the tandem structure. An open circuit voltage (V) of 0.56 V is obtained for single-junction OSCs based on a low band-gap polymer, while multi-junction OSCs based on the same absorber material deliver promising fill factor values along with fully additive V as the number of junctions increase. Optical and electrical simulations, which are reliable and promising guidelines for the design and investigation of multi-junction OSCs, are discussed. The outcome of optical and electrical simulations is in excellent agreement with the experimental data, indicating the outstanding efficiency and functionality of this solution-processed IML. The demonstration of this efficient, solution-processed IML represents a convenient way for facilitating fabrication of multi-junction OSCs to achieve high power conversion efficiency. An efficient solution-processed intermediate layer is introduced for facilitating fabrication of multi-junction organic solar cells (OSCs). The multi-junction OSCs that incorporate this intermediate layer deliver promising fill factor values along with the fully additive open circuit voltage (V) as the number of junctions increase. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.



FAU-Autorinnen und Autoren / FAU-Herausgeberinnen und Herausgeber

Ameri, Tayebeh Dr.
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Baran, Derya
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Brabec, Christoph Prof. Dr.
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Forberich, Karen Dr.
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Li, Ning Dr.-Ing.
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)


Einrichtungen weiterer Autorinnen und Autoren

BASF Schweiz AG
Technical University of Denmark / Danmarks Tekniske Universitet (DTU)


Zitierweisen

APA:
Li, N., Baran, D., Forberich, K., Turbiez, M., Ameri, T., Krebs, F.C., & Brabec, C. (2013). An efficient solution-processed intermediate layer for facilitating fabrication of organic multi-junction solar cells. Advanced Energy Materials, 3(12), 1597-1605. https://dx.doi.org/10.1002/aenm.201300372

MLA:
Li, Ning, et al. "An efficient solution-processed intermediate layer for facilitating fabrication of organic multi-junction solar cells." Advanced Energy Materials 3.12 (2013): 1597-1605.

BibTeX: 

Zuletzt aktualisiert 2019-09-08 um 09:03