Explanation of Stagnation at Points that are not Local Optima in Particle Swarm Optimization by Potential Analysis

Conference contribution


Publication Details

Author(s): Raß A, Schmitt M, Wanka R
Editor(s): ACM New York, NY, USA
Publication year: 2015
Conference Proceedings Title: Companion of Proc. 17th Genetic and Evolutionary Computation Conference (GECCO)
Pages range: 1463-1464
ISBN: 978-1-4503-3488-4
Language: English


Abstract


This paper investigates the frequently observed phenomenon of stagnation which appears on particle swarm optimization (PSO). We introduce a measure of significance of single dimensions and provide experimental and theoretical evidence that the classical PSO, even with swarm parameters known (from the literature) to be good, almost surely does not converge to a local optimum (stagnation) if too few particles are used. Stagnation is an undesirable property of PSO.



FAU Authors / FAU Editors

Raß, Alexander
Professur für Informatik (Effiziente Algorithmen und Kombinatorische Optimierung)
Schmitt, Manuel
Professur für Informatik (Effiziente Algorithmen und Kombinatorische Optimierung)
Wanka, Rolf Prof. Dr.
Professur für Informatik (Effiziente Algorithmen und Kombinatorische Optimierung)


How to cite

APA:
Raß, A., Schmitt, M., & Wanka, R. (2015). Explanation of Stagnation at Points that are not Local Optima in Particle Swarm Optimization by Potential Analysis. In ACM New York, NY, USA (Eds.), Companion of Proc. 17th Genetic and Evolutionary Computation Conference (GECCO) (pp. 1463-1464). Madrid, Spain, ES.

MLA:
Raß, Alexander, Manuel Schmitt, and Rolf Wanka. "Explanation of Stagnation at Points that are not Local Optima in Particle Swarm Optimization by Potential Analysis." Proceedings of the 17th Genetic and Evolutionary Computation Conference (GECCO), Madrid, Spain Ed. ACM New York, NY, USA, 2015. 1463-1464.

BibTeX: 

Last updated on 2018-10-08 at 05:58

Share link