Uniaxial deformation of polystyrene–silica nanocomposites studied by hybrid molecular dynamics–finite element simulations

Beitrag in einer Fachzeitschrift


Details zur Publikation

Autorinnen und Autoren: Liu S, Pfaller S, Rahimi M, Possart G, Steinmann P, Böhm MC, Müller-Plathe F
Zeitschrift: Computational Materials Science
Jahr der Veröffentlichung: 2016
Band: 129
Seitenbereich: 1-12
ISSN: 0927-0256
Sprache: Englisch


Abstract


This contribution investigates, based on molecular dynamics (MD), the mechanical deformation behavior of polystyrene-silica nanocomposites and focuses on the influence of  micromechanical properties as e.g. filler particle size and filler mass fraction. With regard to simulations of macroscopic problems with system sizes not capable by pure MD approaches, our investigations are complemented by hybrid molecular dynamics – finite element (MD-FE) simulations. Our computational approach shows show that an increasing total interfacial area between the nanoparticles and the polymer matrix stiffens the nanocomposite. As expected, small nanoparticles have more significant impact on the macroscopic mechanical properties of nanocomposites than large ones. We show that, for the same mass fraction of nanoparticles, the Young’s modulus increases by about 4–5% when the nanoparticle diameter is decreased from 5 to 2 nm. Furthermore, we find that: (i) the end-to-end distances of free polymer chains in the vicinity of nanoparticles are larger than in the bulk; (ii) the addition of nanoparticles slows down the global dynamics of free polymer chains; and (iii) the interphase thickness of nanocomposites is about 1–1.5 nm. Beyond that, we study structural properties at the microscale under uniaxial tension and find that the presence of nanoparticles hinders the orientation of free polymer chains under deformation. This hindrance is more pronounced for small nanoparticles and high mass fractions. Polymer structural descriptors as the chain end-to-end vector and a molecular anisotropy parameter largely change in line with the geometrical transformation of the whole sample.



FAU-Autorinnen und Autoren / FAU-Herausgeberinnen und Herausgeber

Pfaller, Sebastian Dr.-Ing.
Lehrstuhl für Technische Mechanik
Possart, Gunnar Dr.-Ing.
Lehrstuhl für Technische Mechanik
Steinmann, Paul Prof. Dr.-Ing.
Lehrstuhl für Technische Mechanik


Einrichtungen weiterer Autorinnen und Autoren

Technische Universität Darmstadt
University of Chicago


Zitierweisen

APA:
Liu, S., Pfaller, S., Rahimi, M., Possart, G., Steinmann, P., Böhm, M.C., & Müller-Plathe, F. (2016). Uniaxial deformation of polystyrene–silica nanocomposites studied by hybrid molecular dynamics–finite element simulations. Computational Materials Science, 129, 1-12. https://dx.doi.org/10.1016/j.commatsci.2016.11.031

MLA:
Liu, Shengyuan, et al. "Uniaxial deformation of polystyrene–silica nanocomposites studied by hybrid molecular dynamics–finite element simulations." Computational Materials Science 129 (2016): 1-12.

BibTeX: 

Zuletzt aktualisiert 2018-17-10 um 16:40