ZnO Nanoparticle Formation from the Molecular Precursor [MeZnOtBu]4 by Ozone Treatment in Ionic Liquids: in-situ Vibrational Spectroscopy in an Ultrahigh Vacuum Environment

Journal article
(Original article)


Publication Details

Author(s): Bauer T, Voggenreiter M, Xu T, Wähler T, Agel F, Pohako-Esko K, Schulz P, Döpper T, Görling A, Polarz S, Wasserscheid P, Libuda J
Journal: Zeitschrift fur Anorganische und Allgemeine Chemie
Publisher: Wiley-VCH Verlag
Publication year: 2017
Volume: 643
Journal issue: 1
Pages range: 31-40
ISSN: 1521-3749


Abstract


As reported previously, novel ZnO nanostructures can be grown by oxidation of [MeZnOtBu]“building blocks” with Oin ionic liquids (ILs). In this study, we have explored the role of the IL during ZnO formation by in-situ infrared reflection absorption spectroscopy (IRAS) in ultrahigh vacuum (UHV). [MeZnOtBu]and [CCIm][OTf] were (co-)deposited as thin films by physical vapor deposition (PVD) onto Au(111), separately or simultaneously. The IR spectrum of [MeZnOtBu]was analyzed between 300 and 4000 cmbased on calculated spectra from density-functional theory (DFT). Spectral changes in the IL-related bands during the thermal treatment of [MeZnOtBu]in [CCIm][OTf] indicate the loss of the precursor ligands and the interaction of the IL with the growing ZnO aggregates. The films were treated with ozone (10mbar) in UHV and the spectral changes were monitored in-situ by IRAS. Slow ozonolysis of [CCIm][OTf] is observed. Spectroscopically we identify the primary ozonide formed by addition of Oto [CCIm]and suggest a reaction mechanism, which leads to a biuret derivative. Upon ozone treatment of mixed [MeZnOtBu]/[CCIm][OTf] films, ZnO aggregates are formed at the IL/vacuum interface. Ozonolysis of [CCIm][OTf] is suppressed. Upon annealing to 320 K, further ZnO aggregates are formed, leading to enclosure of [CCIm][OTf] in the ZnO film. At 380 K the IL is released from the mixed film. The pure [CCIm][OTf] desorbs at 420 K, leaving behind the ZnO phase.



FAU Authors / FAU Editors

Agel, Friederike Dr.
Lehrstuhl für Chemische Reaktionstechnik
Bauer, Tanja
Lehrstuhl für Physikalische Chemie II
Döpper, Tibor
Lehrstuhl für Theoretische Chemie
Görling, Andreas Prof. Dr.
Lehrstuhl für Theoretische Chemie
Libuda, Jörg Prof. Dr.
Professur für Physikalische Chemie
Pohako-Esko, Kaija
Lehrstuhl für Chemische Reaktionstechnik
Schulz, Peter Dr.
Lehrstuhl für Chemische Reaktionstechnik
Wähler, Tobias
Lehrstuhl für Physikalische Chemie II
Wasserscheid, Peter Prof. Dr.
Lehrstuhl für Chemische Reaktionstechnik
Xu, Tao
Lehrstuhl für Physikalische Chemie II


Additional Organisation
Exzellenz-Cluster Engineering of Advanced Materials


External institutions with authors

Universität Konstanz


Research Fields

D Catalytic Materials
Exzellenz-Cluster Engineering of Advanced Materials
A3 Multiscale Modeling and Simulation
Exzellenz-Cluster Engineering of Advanced Materials


How to cite

APA:
Bauer, T., Voggenreiter, M., Xu, T., Wähler, T., Agel, F., Pohako-Esko, K.,... Libuda, J. (2017). ZnO Nanoparticle Formation from the Molecular Precursor [MeZnOtBu]4 by Ozone Treatment in Ionic Liquids: in-situ Vibrational Spectroscopy in an Ultrahigh Vacuum Environment. Zeitschrift fur Anorganische und Allgemeine Chemie, 643(1), 31-40. https://dx.doi.org/10.1002/zaac.201600345

MLA:
Bauer, Tanja, et al. "ZnO Nanoparticle Formation from the Molecular Precursor [MeZnOtBu]4 by Ozone Treatment in Ionic Liquids: in-situ Vibrational Spectroscopy in an Ultrahigh Vacuum Environment." Zeitschrift fur Anorganische und Allgemeine Chemie 643.1 (2017): 31-40.

BibTeX: 

Last updated on 2018-08-11 at 20:50