ZnO Nanoparticle Formation from the Molecular Precursor [MeZnOtBu]4 by Ozone Treatment in Ionic Liquids: in-situ Vibrational Spectroscopy in an Ultrahigh Vacuum Environment

Beitrag in einer Fachzeitschrift
(Originalarbeit)


Details zur Publikation

Autor(en): Bauer T, Voggenreiter M, Xu T, Wähler T, Agel F, Pohako-Esko K, Schulz P, Döpper T, Görling A, Polarz S, Wasserscheid P, Libuda J
Zeitschrift: Zeitschrift fur Anorganische und Allgemeine Chemie
Verlag: Wiley-VCH Verlag
Jahr der Veröffentlichung: 2017
Band: 643
Heftnummer: 1
Seitenbereich: 31-40
ISSN: 1521-3749


Abstract


As reported previously, novel ZnO nanostructures can be grown by oxidation of [MeZnOtBu]“building blocks” with Oin ionic liquids (ILs). In this study, we have explored the role of the IL during ZnO formation by in-situ infrared reflection absorption spectroscopy (IRAS) in ultrahigh vacuum (UHV). [MeZnOtBu]and [CCIm][OTf] were (co-)deposited as thin films by physical vapor deposition (PVD) onto Au(111), separately or simultaneously. The IR spectrum of [MeZnOtBu]was analyzed between 300 and 4000 cmbased on calculated spectra from density-functional theory (DFT). Spectral changes in the IL-related bands during the thermal treatment of [MeZnOtBu]in [CCIm][OTf] indicate the loss of the precursor ligands and the interaction of the IL with the growing ZnO aggregates. The films were treated with ozone (10mbar) in UHV and the spectral changes were monitored in-situ by IRAS. Slow ozonolysis of [CCIm][OTf] is observed. Spectroscopically we identify the primary ozonide formed by addition of Oto [CCIm]and suggest a reaction mechanism, which leads to a biuret derivative. Upon ozone treatment of mixed [MeZnOtBu]/[CCIm][OTf] films, ZnO aggregates are formed at the IL/vacuum interface. Ozonolysis of [CCIm][OTf] is suppressed. Upon annealing to 320 K, further ZnO aggregates are formed, leading to enclosure of [CCIm][OTf] in the ZnO film. At 380 K the IL is released from the mixed film. The pure [CCIm][OTf] desorbs at 420 K, leaving behind the ZnO phase.



FAU-Autoren / FAU-Herausgeber

Agel, Friederike Dr.
Döpper, Tibor
Lehrstuhl für Chemische Reaktionstechnik
Bauer, Tanja
Lehrstuhl für Physikalische Chemie II
Lehrstuhl für Theoretische Chemie
Lehrstuhl für Theoretische Chemie
Görling, Andreas Prof. Dr.
Libuda, Jörg Prof. Dr.
Professur für Physikalische Chemie
Pohako-Esko, Kaija
Lehrstuhl für Chemische Reaktionstechnik
Schulz, Peter Dr.
Lehrstuhl für Chemische Reaktionstechnik
Wähler, Tobias
Lehrstuhl für Physikalische Chemie II
Wasserscheid, Peter Prof. Dr.
Lehrstuhl für Chemische Reaktionstechnik
Xu, Tao
Lehrstuhl für Physikalische Chemie II


Zusätzliche Organisationseinheit(en)
Exzellenz-Cluster Engineering of Advanced Materials


Autor(en) der externen Einrichtung(en)
Universität Konstanz


Zitierweisen

APA:
Bauer, T., Voggenreiter, M., Xu, T., Wähler, T., Agel, F., Pohako-Esko, K.,... Libuda, J. (2017). ZnO Nanoparticle Formation from the Molecular Precursor [MeZnOtBu]4 by Ozone Treatment in Ionic Liquids: in-situ Vibrational Spectroscopy in an Ultrahigh Vacuum Environment. Zeitschrift fur Anorganische und Allgemeine Chemie, 643(1), 31-40. https://dx.doi.org/10.1002/zaac.201600345

MLA:
Bauer, Tanja, et al. "ZnO Nanoparticle Formation from the Molecular Precursor [MeZnOtBu]4 by Ozone Treatment in Ionic Liquids: in-situ Vibrational Spectroscopy in an Ultrahigh Vacuum Environment." Zeitschrift fur Anorganische und Allgemeine Chemie 643.1 (2017): 31-40.

BibTeX: 

Zuletzt aktualisiert 2018-08-11 um 20:50