Bounds on universal quantum computation with perturbed two-dimensional cluster states

Beitrag in einer Fachzeitschrift


Details zur Publikation

Autorinnen und Autoren: Orus R, Kalis H, Bornemann M, Schmidt KP
Zeitschrift: Physical Review A
Verlag: AMER PHYSICAL SOC
Jahr der Veröffentlichung: 2013
Band: 87
Heftnummer: 6
ISSN: 1050-2947


Abstract


Motivated by the possibility of universal quantum computation under noise perturbations, we compute the phase diagram of the two-dimensional (2D) cluster state Hamiltonian in the presence of Ising terms and magnetic fields. Unlike in previous analysis of perturbed 2D cluster states, we find strong evidence of a very well-defined cluster phase, separated from a polarized phase by a line of first-and second-order transitions compatible with the 3D Ising universality class and a tricritical end point. The phase boundary sets an upper bound for the amount of perturbation in the system so that its ground state is still useful for measurement-based quantum computation purposes. Moreover, we also compute the local fidelity with the unperturbed 2D cluster state. Besides a classical approximation, we determine the phase diagram by combining series expansion and variational infinite projected entangled-pair states methods. Our work constitutes an analysis of the nontrivial effect of few-body perturbations in the 2D cluster state, which is of relevance for experimental proposals.



FAU-Autorinnen und Autoren / FAU-Herausgeberinnen und Herausgeber

Schmidt, Kai Phillip Prof. Dr.
Professur für Theoretische Physik


Einrichtungen weiterer Autorinnen und Autoren

Albert-Ludwigs-Universität Freiburg
Johannes Gutenberg-Universität Mainz
Technische Universität Dortmund


Zitierweisen

APA:
Orus, R., Kalis, H., Bornemann, M., & Schmidt, K.P. (2013). Bounds on universal quantum computation with perturbed two-dimensional cluster states. Physical Review A, 87(6). https://dx.doi.org/10.1103/PhysRevA.87.062312

MLA:
Orus, Roman, et al. "Bounds on universal quantum computation with perturbed two-dimensional cluster states." Physical Review A 87.6 (2013).

BibTeX: 

Zuletzt aktualisiert 2018-08-08 um 10:38