Effective Ligand Engineering of the Cu2ZnSnS4 Nanocrystal Surface for Increasing Hole Transport Efficiency in Perovskite Solar Cells

Journal article
(Original article)


Publication Details

Author(s): Khanzada LS, Levchuk I, Hou Y, Azimi SH, Osvet A, Ahmad R, Brandl M, Herre P, Distaso M, Hock R, Peukert W, Batentschuk M, Brabec C
Journal: Advanced Functional Materials
Publication year: 2016
ISSN: 1616-3028
Language: English


Abstract


Effective engineering of surface ligands in semiconductor nanocrystals can facilitate the electronic interaction between the individual nanocrystals, making them promising for low-cost optoelectronic applications. Here, the use of high purity CuZnSnS (CZTS) nanocrystals as the photoactive layer and hole-transporting material is reported in low-temperature solution-processed solar cells. The high purity CZTS nanocrystals are prepared by engineering the surface ligands of CZTS nanocrystals, capped originally with the long-chain organic ligand oleylamine. After ligand removal, CZTS nanocrystals show substantial improvement in photoconductivity and mobility, displaying also an appreciable photoresponse in a simple heterojunction solar cell architecture. More notably, CZTS nanocrystals exhibit excellent hole-transporting properties as interface layer in perovskite solar cells, yielding power conversion efficiency (PCE) of 15.4% with excellent fill factor (FF) of 81%. These findings underscore the importance of removing undesired surface ligands in nanocrystalline optoelectronic devices, and demonstrate the great potential of CZTS nanocrystals as both active and passive material for the realization of low-cost efficient solar cells.



FAU Authors / FAU Editors

Ahmad, Rameez
Lehrstuhl für Feststoff- und Grenzflächenverfahrenstechnik
Azimi, Seyed Hamed Dr.
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Batentschuk, Miroslaw PD Dr.
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Brabec, Christoph Prof. Dr.
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Brandl, Marco
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Distaso, Monica Dr.
Lehrstuhl für Feststoff- und Grenzflächenverfahrenstechnik
Herre, Patrick
Lehrstuhl für Feststoff- und Grenzflächenverfahrenstechnik
Hock, Rainer Prof. Dr.
Professur für Kristallographie und Strukturphysik
Hou, Yi Dr.-Ing.
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Khanzada, Laraib Sarfraz
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Levchuk, Ievgen
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Osvet, Andres Dr.
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Peukert, Wolfgang Prof. Dr.-Ing.
Lehrstuhl für Feststoff- und Grenzflächenverfahrenstechnik


Additional Organisation
Graduiertenkolleg 1896/2 In situ Mikroskopie mit Elektronen, Röntgenstrahlen und Rastersonden
Erlangen Graduate School in Advanced Optical Technologies
Exzellenz-Cluster Engineering of Advanced Materials


How to cite

APA:
Khanzada, L.S., Levchuk, I., Hou, Y., Azimi, S.H., Osvet, A., Ahmad, R.,... Brabec, C. (2016). Effective Ligand Engineering of the Cu2ZnSnS4 Nanocrystal Surface for Increasing Hole Transport Efficiency in Perovskite Solar Cells. Advanced Functional Materials. https://dx.doi.org/10.1002/adfm.201603441

MLA:
Khanzada, Laraib Sarfraz, et al. "Effective Ligand Engineering of the Cu2ZnSnS4 Nanocrystal Surface for Increasing Hole Transport Efficiency in Perovskite Solar Cells." Advanced Functional Materials (2016).

BibTeX: 

Last updated on 2018-19-04 at 03:39