Relation of Nanostructure and Recombination Dynamics in a Low-Temperature Solution-Processed CuInS2 Nanocrystalline Solar Cell

Journal article


Publication Details

Author(s): Peukert W, Brabec C, Azimi SH, Heumüller T, Gerl A, Matt G, Kubis P, Distaso M, Ahmad R, Akdas T, Richter M
Journal: Advanced Energy Materials
Publication year: 2013
Volume: 3
Journal issue: 12
Pages range: 1589--1596
ISSN: 1614-6832
eISSN: 1614-6840
Language: English


Abstract


The understanding and control of nanostructures with regard to transport and recombination mechanisms is of key importance in the optimization of the power conversion efficiency (PCE) of solar cells based on inorganic nanocrystals. Here, the transport properties of solution-processed solar cells are investigated using photo-CELIV (photogenerated charge carrier extraction by linearly increasing voltage) and transient photovoltage techniques; the solar cells are prepared by an in-situ formation of CuInS2 nanocrystals (CIS NCs) at the low temperature of 270 °C. Structural and morphological analyses reveal the presence of a metastable CuIn5S8 phase and a disordered morphology in the CuInS2 nanocrytalline films consisting of polycrystalline grains at the nanoscale range. Consistent with the disordered morphology of the CIS NC thin films, the CIS NC devices are characterized by a low carrier mobility. The carrier density dynamic indicates that the recombination kinetics in these devices follows the dispersive bimolecular recombination model and does not fully behave in a diffusion-controlled manner, as expected by Langevin-type recombination. The mobility–lifetime product of the charge carriers properly explains the performance of the thin (200 nm) CIS NC solar cell with a high fill-factor of 64\% and a PCE of over 3.5\%.


FAU Authors / FAU Editors

Ahmad, Rameez
Lehrstuhl für Feststoff- und Grenzflächenverfahrenstechnik
Akdas, Tugce
Lehrstuhl für Feststoff- und Grenzflächenverfahrenstechnik
Azimi, Seyed Hamed Dr.
Institute Materials for Electronics and Energy Technology (i-MEET)
Brabec, Christoph Prof. Dr.
Institute Materials for Electronics and Energy Technology (i-MEET)
Distaso, Monica Dr.
Lehrstuhl für Feststoff- und Grenzflächenverfahrenstechnik
Heumüller, Thomas Dr.-Ing.
Institute Materials for Electronics and Energy Technology (i-MEET)
Kubis, Peter
Institute Materials for Electronics and Energy Technology (i-MEET)
Matt, Gebhard Dr.
Institute Materials for Electronics and Energy Technology (i-MEET)
Peukert, Wolfgang Prof. Dr.-Ing.
Lehrstuhl für Feststoff- und Grenzflächenverfahrenstechnik
Richter, Moses
Institute Materials for Electronics and Energy Technology (i-MEET)


Additional Organisation
Exzellenz-Cluster Engineering of Advanced Materials


Research Fields

B Nanoelectronic Materials
Exzellenz-Cluster Engineering of Advanced Materials
A1 Functional Particle Systems
Exzellenz-Cluster Engineering of Advanced Materials


How to cite

APA:
Peukert, W., Brabec, C., Azimi, S.H., Heumüller, T., Gerl, A., Matt, G.,... Richter, M. (2013). Relation of Nanostructure and Recombination Dynamics in a Low-Temperature Solution-Processed CuInS2 Nanocrystalline Solar Cell. Advanced Energy Materials, 3(12), 1589--1596. https://dx.doi.org/10.1002/aenm.201300449

MLA:
Peukert, Wolfgang, et al. "Relation of Nanostructure and Recombination Dynamics in a Low-Temperature Solution-Processed CuInS2 Nanocrystalline Solar Cell." Advanced Energy Materials 3.12 (2013): 1589--1596.

BibTeX: 

Last updated on 2019-11-07 at 09:19