Strontium isotopic, chemical, and sedimentological evidence for the evolution of Lake Lisan and the Dead Sea

Stein M, Starinsly A, Katz A, Goldstein SL, Malka M, Schramm A (1997)


Publication Language: English

Publication Status: Published

Publication Type: Journal article, Original article

Publication year: 1997

Journal

Publisher: Meteoritical Society

Book Volume: 61

Pages Range: 3975-3992

Journal Issue: 18

DOI: 10.1016/S0016-7037(97)00191-9

Abstract

Precise strontium isotope ratios, combined with chemical analyses and sedimentological information, are used to monitor the water sources and the evolution of the Dead Sea and its late Pleistocene precursor, Lake Lisan (70-18 kyr B.P.). The materials analyzed include bulk aragonite, water-leached soluble salts, and residual aragonite and gypsum from the Lisan Formation in the Perazim Valley (near the SW shore of the Dead Sea). The residual aragonite and the associated soluble salts display systematic fluctuations in Sr/Sr ratios between 0.70803 and 0.70806 and from 0.70805 to 0.70807, respectively. In individual soluble salt-residual aragonite pairs, the soluble salt displays a higher Sr/Sr ratio. Gypsum samples yield Sr/Sr ratios similar to the soluble salts from adjacent layers in the section. This shows that, in individual samples, the source of Sr in aragonite was distinct from that in soluble salts and the gypsum. The sterility of the Lisan sediments, their strictly nonbioturbated fine lamination, and their high content of chloride salts indicate that Lake Lisan was a saline, or even hypersaline water body. In the absence of alternative sources of HCO and SO the abundance of primary aragonite and gypsum in the Lisan column reflects an import of very large volumes of freshwater into the otherwise saline lake, resulting in a density stratification of this water body. The history of the upper water layer and that of the lower brine is reflected in the chemical and strontium isotope composition of the aragonite and in that of the associated soluble salts and in the gypsum samples, respectively. Whereas the bicarbonate and much of the Ca required for aragonite crystallization were supplied by the freshwater, the complementary Ca (and Sr) were added by the lower brine. The upper water layer of Lake Lisan acted as a SO capacitor during the lake's rise periods. It was removed therefrom, as prominent gypsum beds, upon climatic-induced (drier period) mixing or even complete overturn of the lake. The evolution of Lake Lisan took place between two distinct modes. The first was characterized by an extensive supply of freshwater and resulted in a rise of the lake's level, a (density) layered structure, and precipitation of aragonite. The second mode was marked by a diminishing freshwater input, resulting in mixing or complete overturn of its water, and precipitation of gypsum. These two modes reflect the climatic evolution of the region in the late Pleistocene which fluctuated between drier and wetter periods. The transition to the Holocene is accompanied by the dry up of Lake Lisan and its contraction to the present Dead Sea. Copyright © 1997 Elsevier Science Ltd.

Authors with CRIS profile

Involved external institutions

How to cite

APA:

Stein, M., Starinsly, A., Katz, A., Goldstein, S.L., Malka, M., & Schramm, A. (1997). Strontium isotopic, chemical, and sedimentological evidence for the evolution of Lake Lisan and the Dead Sea. Geochimica Et Cosmochimica Acta, 61(18), 3975-3992. https://dx.doi.org/10.1016/S0016-7037(97)00191-9

MLA:

Stein, Mordechai, et al. "Strontium isotopic, chemical, and sedimentological evidence for the evolution of Lake Lisan and the Dead Sea." Geochimica Et Cosmochimica Acta 61.18 (1997): 3975-3992.

BibTeX: Download