Axonal and synaptic failure suppress the transfer of firing rate oscillations, synchrony and information during high frequency deep brain stimulation

Rosenbaum R, Zimnik A, Zheng F, Turner RS, Alzheimer C, Doiron B, Rubin JE (2014)


Publication Type: Journal article

Publication year: 2014

Journal

Publisher: Elsevier

Book Volume: 62

Pages Range: 86-99

DOI: 10.1016/j.nbd.2013.09.006

Abstract

High frequency deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a widely used treatment for Parkinson's disease, but its effects on neural activity in basal ganglia circuits are not fully understood. DBS increases the excitation of STN efferents yet decouples STN spiking patterns from the spiking patterns of STN synaptic targets. We propose that this apparent paradox is resolved by recent studies showing an increased rate of axonal and synaptic failures in STN projections during DBS. To investigate this hypothesis, we combine in vitro and in vivo recordings to derive a computational model of axonal and synaptic failure during DBS. Our model shows that these failures induce a short term depression that suppresses the synaptic transfer of firing rate oscillations, synchrony and rate-coded information from STN to its synaptic targets. In particular, our computational model reproduces the widely reported suppression of parkinsonian ? oscillations and synchrony during DBS. Our results support the idea that short term depression is a therapeutic mechanism of STN DBS that works as a functional lesion by decoupling the somatic spiking patterns of STN neurons from spiking activity in basal ganglia output nuclei.

Authors with CRIS profile

Involved external institutions

How to cite

APA:

Rosenbaum, R., Zimnik, A., Zheng, F., Turner, R.S., Alzheimer, C., Doiron, B., & Rubin, J.E. (2014). Axonal and synaptic failure suppress the transfer of firing rate oscillations, synchrony and information during high frequency deep brain stimulation. Neurobiology of Disease, 62, 86-99. https://doi.org/10.1016/j.nbd.2013.09.006

MLA:

Rosenbaum, Robert, et al. "Axonal and synaptic failure suppress the transfer of firing rate oscillations, synchrony and information during high frequency deep brain stimulation." Neurobiology of Disease 62 (2014): 86-99.

BibTeX: Download