Voiced/unvoiced transitions in speech as a potential bio-marker to detect Parkinson's disease

Conference contribution
(Conference Contribution)


Publication Details

Author(s): Orozco-Arroyave JR, Hönig F, Arias-Londoño JD, Vargas-Bonilla JF, Skodda S, Rusz J, Nöth E
Publisher: International Speech and Communication Association
Publication year: 2015
Pages range: 95-99


Abstract


Several studies have addressed the automatic classification of speakers with Parkinson's disease (PD) and healthy controls (HC). Most of the studies are based on speech recordings of sustained vowels, isolated words, and single sentences. Only few investigations have considered read texts and/or spontaneous speech. This paper addresses two main questions still open regarding the automatic analysis speech in patients with PD, (a) "Is it possible to classify PD patients and HC through running speech signals in multiple languages", and (b) "where is the information to discriminate between speech recordings of PD patients and HC" In this paper speech recordings of read texts and monologues spoken in three different languages are considered. The energy content of the borders between voiced and unvoiced sounds is modeled. According to the results with read texts it is possible to achieve accuracies ranging from 91% to 98% depending on the language. With respect to the results on monologues, the accuracies are above 98% in all of the three languages. The presence of discriminant information in the voiced/unvoiced and unvoiced/voiced transitions is validated here, evidencing the problems of PD patients to stop/start the vocal folds movement during the production of running speech.



FAU Authors / FAU Editors

Hönig, Florian
Lehrstuhl für Informatik 5 (Mustererkennung)
Nöth, Elmar Prof. Dr.-Ing.
Professur für Informatik (Mustererkennung)


How to cite

APA:
Orozco-Arroyave, J.R., Hönig, F., Arias-Londoño, J.D., Vargas-Bonilla, J.F., Skodda, S., Rusz, J., & Nöth, E. (2015). Voiced/unvoiced transitions in speech as a potential bio-marker to detect Parkinson's disease. (pp. 95-99). International Speech and Communication Association.

MLA:
Orozco-Arroyave, J. R., et al. "Voiced/unvoiced transitions in speech as a potential bio-marker to detect Parkinson's disease." Proceedings of the 16th Annual Conference of the International Speech Communication Association, INTERSPEECH 2015 International Speech and Communication Association, 2015. 95-99.

BibTeX: 

Last updated on 2018-19-04 at 03:20