Low-Complexity Linear Precoding for Downlink Large-Scale MIMO Systems

Conference contribution
(Conference Contribution)


Publication Details

Author(s): Zarei S, Gerstacker W, Müller R, Schober R
Publication year: 2013
Pages range: 1119-1124
ISSN: 2166-9570


Abstract


In this work, we present a low-complexity linear precoding scheme for downlink large-scale multiple-input multiple-output (MIMO) systems. The proposed scheme can achieve near minimum mean square error (MMSE) precoding performance in terms of the sum rate and is based on a matrix polynomial instead of matrix inversion. Simulation results show that matrix polynomials consisting of only a few terms are sufficient to closely approach the sum rate of the classical MMSE precoder and to perform orders of magnitude better than the simple conjugate beamforming (BF) precoder. We derive exact expressions for the computational complexity of the proposed scheme in terms of the number of additions and multiplications and compare it to the complexity of the BF and MMSE precoders. Our complexity analysis shows that for large number of base station antennas N compared to the number of generated transmit symbols tau per channel estimate and large number of users K, the proposed polynomial precoder has a lower complexity than the classical MMSE precoder.



FAU Authors / FAU Editors

Gerstacker, Wolfgang Prof. Dr.
Technische Fakultät
Müller, Ralf Prof. Dr.-Ing.
Professur für Informationsübertragung
Schober, Robert Prof. Dr.-Ing.
Lehrstuhl für Digitale Übertragung
Zarei, Shahram
Lehrstuhl für Digitale Übertragung


How to cite

APA:
Zarei, S., Gerstacker, W., Müller, R., & Schober, R. (2013). Low-Complexity Linear Precoding for Downlink Large-Scale MIMO Systems. (pp. 1119-1124).

MLA:
Zarei, Shahram, et al. "Low-Complexity Linear Precoding for Downlink Large-Scale MIMO Systems." 2013. 1119-1124.

BibTeX: 

Last updated on 2018-08-08 at 05:41