Oxidation-driven self-assembly gives access to high-nuclearity molecular copper vanadium oxide clusters

Journal article
(Original article)


Publication Details

Author(s): Forster J, Rösner B, Fink R, Nye L, Ivanovic-Burmazovic I, Kastner K, Tucher J, Streb C
Journal: Chemical Science
Publisher: Royal Society of Chemistry
Publication year: 2013
Volume: 4
Journal issue: 1
Pages range: 418-424
ISSN: 2041-6520


Abstract


We report a general fragmentation-and-re-assembly route which gives access to high-nuclearity, mixed-metal polyoxometalate clusters. Reduced vanadium(iv) precursors are oxidatively dis-assembled into reactive fragments which subsequently re-aggregate under template control in a one-pot reaction. It is shown that the oxidative dis-assembly is required, as the use of vanadium(v)-based precursors results in the formation of smaller clusters. The principle is exemplified by the synthesis of a ca. 1.8 × 1.7 × 1.0 nm, 36-nuclear copper vanadium oxide cluster, (nBu N)[CuVO(NO )(CHCN)]. The cluster is characterized in the solid-state and in solution by single-crystal XRD, ESI-MS and other spectroscopic and electrochemical measurements. Several lines of evidence show that the compound is indeed formed exclusively by fully oxidized vanadium(v) centres. In addition, primary fragmentation products of the type [VO(dmso)] were isolated. The cuprovanadate cluster features pentagonal secondary building units of the type {(V)M} (M = Cu, V) which show similar structural function as the well-known {(Mo)Mo } pentagons observed in giant molybdate clusters. The observation suggests that more complex vanadate clusters might be accessible based on these pentagonal units. © 2013 The Royal Society of Chemistry.



FAU Authors / FAU Editors

Fink, Rainer Prof. Dr.
Ivanovic-Burmazovic, Ivana Prof. Dr.
Professur für Physikalische Chemie
Forster, Johannes
Lehrstuhl für Anorganische und Allgemeine Chemie
Lehrstuhl für Bioanorganische Chemie
Kastner, Katharina
Lehrstuhl für Anorganische und Allgemeine Chemie
Nye, Leanne
Sonderforschungsbereich 583 Redoxative Metallkomplexe - Reaktivitätssteuerung durch molekulare Architekturen (Sprecher: Prof.Dr.Kisch)
Rösner, Benedikt
Lehrstuhl für Physikalische Chemie II
Streb, Carsten Dr.
Lehrstuhl für Anorganische und Allgemeine Chemie
Tucher, Johannes
Sonderforschungsbereich 583 Redoxative Metallkomplexe - Reaktivitätssteuerung durch molekulare Architekturen (Sprecher: Prof.Dr.Kisch)


How to cite

APA:
Forster, J., Rösner, B., Fink, R., Nye, L., Ivanovic-Burmazovic, I., Kastner, K.,... Streb, C. (2013). Oxidation-driven self-assembly gives access to high-nuclearity molecular copper vanadium oxide clusters. Chemical Science, 4(1), 418-424. https://dx.doi.org/10.1039/c2sc20942j

MLA:
Forster, Johannes, et al. "Oxidation-driven self-assembly gives access to high-nuclearity molecular copper vanadium oxide clusters." Chemical Science 4.1 (2013): 418-424.

BibTeX: 

Last updated on 2019-07-04 at 21:50