Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications

Misra SK, Ansari TI, Valappil SP, Mohn D, Philip SE, Stark WJ, Roy I, Knowles JC, Salih V, Boccaccini AR (2010)


Publication Type: Journal article

Publication year: 2010

Journal

Publisher: Elsevier

Book Volume: 31

Pages Range: 2806-2815

DOI: 10.1016/j.biomaterials.2009.12.045

Abstract

Poly(3-hydroxybutyrate) (P(3HB)) foams exhibiting highly interconnected porosity (85% porosity) were prepared using a unique combination of solvent casting and particulate leaching techniques by employing commercially available sugar cubes as porogen. Bioactive glass (BG) particles of 45S5 Bioglass® grade were introduced in the scaffold microstructure, both in micrometer ((m-BG), <5 μm) and nanometer ((n-BG), 30 nm) sizes. The in vitro bioactivity of the P(3HB)/BG foams was confirmed within 10 days of immersion in simulated body fluid and the foams showed high level of protein adsorption. The foams interconnected porous microstructure proved to be suitable for MG-63 osteoblast cell attachment and proliferation. The foams implanted in rats as subcutaneous implants resulted in a non-toxic and foreign body response after one week of implantation. In addition to showing bioactivity and biocompatibility, the P(3HB)/BG composite foams also exhibited bactericidal properties, which was tested on the growth of Staphylococcus aureus. An attempt was made at developing multifunctional scaffolds by incorporating, in addition to BG, selected concentrations of Vitamin E or/and carbon nanotubes. P(3HB) scaffolds with multifunctionalities (viz. bactericidal, bioactive, electrically conductive, antioxidative behaviour) were thus produced, which paves the way for next generation of advanced scaffolds for bone tissue engineering. © 2009 Elsevier Ltd. All rights reserved.

Authors with CRIS profile

Involved external institutions

How to cite

APA:

Misra, S.K., Ansari, T.I., Valappil, S.P., Mohn, D., Philip, S.E., Stark, W.J.,... Boccaccini, A.R. (2010). Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications. Biomaterials, 31, 2806-2815. https://dx.doi.org/10.1016/j.biomaterials.2009.12.045

MLA:

Misra, Superb K., et al. "Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications." Biomaterials 31 (2010): 2806-2815.

BibTeX: Download