Arcus: The X-ray grating spectrometer explorer

Conference contribution
(Conference Contribution)

Publication Details

Author(s): Smith RK, Abraham MH, Allured R, Bautz M, Bookbinder J, Bregman JN, Brenneman L, Brickhouse NS, Burrows DN, Burwitz V, Carvalho R, Cheimets PN, Costantini E, Dawson S, DeRoo C, Falcone A, Foster AR, Grant CE, Heilmann RK, Hertz E, Hine B, Huenemoerder D, Kaastra JS, Madsen KK, McEntaffer RL, Miller ED, Miller J, Morse E, Mushotzky R, Nandra K, Nowak M, Paerels F, Petre R, Plice L, Poppenhaeger K, Ptak A, Reid P, Sanders J, Schattenburg ML, Schulz N, Smale A, Temi P, Valencic L, Walker S, Willingale R, Wilms J, Wolk SJ
Publisher: SPIE
Publication year: 2016
Volume: 9905
ISBN: 9781510601895


Arcus will be proposed to the NASA Explorer program as a free-flying satellite mission that will enable high-resolution soft X-ray spectroscopy (8-50Å) with unprecedented sensitivity - effective areas of >500 sq cm and spectral resolution >2500. The Arcus key science goals are (1) to determine how baryons cycle in and out of galaxies by measuring the effects of structure formation imprinted upon the hot gas that is predicted to lie in extended halos around galaxies, groups, and clusters, (2) to determine how black holes influence their surroundings by tracing the propagation of out-flowing mass, energy and momentum from the vicinity of the black hole out to large scales and (3) to understand how accretion forms and evolves stars and circumstellar disks by observing hot infalling and outflowing gas in these systems. Arcus relies upon grazing-incidence silicon pore X-ray optics with the same 12m focal length (achieved using an extendable optical bench) that will be used for the ESA Athena mission. The focused X-rays from these optics will then be diffracted by high-efficiency off-plane reflection gratings that have already been demonstrated on sub-orbital rocket flights, imaging the results with flight-proven CCD detectors and electronics. The power and telemetry requirements on the spacecraft are modest. The majority of mission operations will not be complex, as most observations will be long (∼100 ksec), uninterrupted, and pre-planned, although there will be limited capabilities to observe targets of opportunity, such as tidal disruption events or supernovae with a 3-5 day turnaround. After the end of prime science, we plan to allow guest observations to maximize the science return of Arcus to the community.

FAU Authors / FAU Editors

Wilms, Jörn Prof. Dr.
Professur für Astronomie und Astrophysik

External institutions with authors

California Institute of Technology (Caltech)
Columbia University
Johns Hopkins University
Massachusetts Institute of Technology (MIT)
Max-Planck-Institut für extraterrestrische Physik (MPE) / Max Planck Institute for Extraterrestrial Physics
National Aeronautics and Space Administration (NASA)
Netherlands Institute for Space Research / Stichting Ruimteonderzoek Nederland (SRON)
Pennsylvania State University (Penn State)
Queen's University
Smithsonian Institution
The Aerospace Corporation
University of Leicester
University of Maryland
University of Michigan

How to cite

Smith, R.K., Abraham, M.H., Allured, R., Bautz, M., Bookbinder, J., Bregman, J.N.,... Wolk, S.J. (2016). Arcus: The X-ray grating spectrometer explorer. In Proceedings of the Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray. SPIE.

Smith, R. K., et al. "Arcus: The X-ray grating spectrometer explorer." Proceedings of the Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray SPIE, 2016.


Last updated on 2019-18-07 at 07:18