Dislocations in bilayer graphene

Journal article

Publication Details

Author(s): Butz B, Dolle C, Niekiel F, Weber K, Waldmann D, Weber HB, Meyer B, Spiecker E, Spiecker E
Journal: Nature
Publisher: Nature Publishing Group
Publication year: 2014
Volume: 505
Pages range: 533-537
ISSN: 0028-0836


Dislocations represent one of the most fascinating and fundamental concepts in materials science. Most importantly, dislocations are the main carriers of plastic deformation in crystalline materials. Furthermore, they can strongly affect the local electronic and optical properties of semiconductors and ionic crystals. In materials with small dimensions, they experience extensive image forces, which attract them to the surface to release strain energy. However, in layered crystals such as graphite, dislocation movement is mainly restricted to the basal plane. Thus, the dislocations cannot escape, enabling their confinement in crystals as thin as only two monolayers. To explore the nature of dislocations under such extreme boundary conditions, the material of choice is bilayer graphene, the thinnest possible quasi-two-dimensional crystal in which such linear defects can be confined. Homogeneous and robust graphene membranes derived from high-quality epitaxial graphene on silicon carbide provide an ideal platform for their investigation. Here we report the direct observation of basal-plane dislocations in freestanding bilayer graphene using transmission electron microscopy and their detailed investigation by diffraction contrast analysis and atomistic simulations. Our investigation reveals two striking size effects. First, the absence of stacking-fault energy, a unique property of bilayer graphene, leads to a characteristic dislocation pattern that corresponds to an alternating ABAC change of the stacking order. Second, our experiments in combination with atomistic simulations reveal a pronounced buckling of the bilayer graphene membrane that results directly from accommodation of strain. In fact, the buckling changes the strain state of the bilayer graphene and is of key importance for its electronic properties. Our findings will contribute to the understanding of dislocations and of their role in the structural, mechanical and electronic properties of bilayer and few-layer graphene. © 2014 Macmillan Publishers Limited. All rights reserved.

FAU Authors / FAU Editors

Butz, Benjamin Dr.
Professur für Werkstoffwissenschaften (Elektronenmikroskopie)
Dolle, Christian
Professur für Werkstoffwissenschaften (Elektronenmikroskopie)
Meyer, Bernd Prof. Dr.
Professur für Computational Chemistry
Niekiel, Florian
Professur für Werkstoffwissenschaften (Elektronenmikroskopie)
Spiecker, Erdmann Prof. Dr.
Lehrstuhl für Werkstoffwissenschaften (Mikro- und Nanostrukturforschung)
Spiecker, Erdmann Prof. Dr.
Professur für Werkstoffwissenschaften (Elektronenmikroskopie)
Waldmann, Daniel
Lehrstuhl für Angewandte Physik
Weber, Konstantin
Professur für Computational Chemistry
Weber, Heiko B. Prof. Dr.
Lehrstuhl für Angewandte Physik

Additional Organisation
Exzellenz-Cluster Engineering of Advanced Materials
Interdisziplinäres Zentrum, Center for Nanoanalysis and Electron Microscopy (CENEM)
Graduiertenkolleg 1896/2 In situ Mikroskopie mit Elektronen, Röntgenstrahlen und Rastersonden

Research Fields

Lehrstuhl für Angewandte Physik
B Nanoelectronic Materials
Exzellenz-Cluster Engineering of Advanced Materials
A2 Nanoanalysis and Microscopy
Exzellenz-Cluster Engineering of Advanced Materials
A3 Multiscale Modeling and Simulation
Exzellenz-Cluster Engineering of Advanced Materials

How to cite

Butz, B., Dolle, C., Niekiel, F., Weber, K., Waldmann, D., Weber, H.B.,... Spiecker, E. (2014). Dislocations in bilayer graphene. Nature, 505, 533-537. https://dx.doi.org/10.1038/nature12780

Butz, Benjamin, et al. "Dislocations in bilayer graphene." Nature 505 (2014): 533-537.


Last updated on 2019-29-05 at 15:50