Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide

Beitrag in einer Fachzeitschrift

Details zur Publikation

Autorinnen und Autoren: Emtsev K, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, McChesney J, Ohta T, Reshanov S, Röhrl J, Rotenberg E, Schmid A, Waldmann D, Weber HB, Seyller T
Zeitschrift: Nature Materials
Verlag: Nature Publishing Group
Jahr der Veröffentlichung: 2009
Band: 8
Seitenbereich: 203-207
ISSN: 1476-1122


Graphene, a single monolayer of graphite, has recently attracted considerable interest owing to its novel magneto-transport properties, high carrier mobility and ballistic transport up to room temperature. It has the potential for technological applications as a successor of silicon in the post Moore's law era, as a single-molecule gas sensor, in spintronics, in quantum computing or as a terahertz oscillator. For such applications, uniform ordered growth of graphene on an insulating substrate is necessary. The growth of graphene on insulating silicon carbide (SiC) surfaces by high-temperature annealing in vacuum was previously proposed to open a route for large-scale production of graphene-based devices. However, vacuum decomposition of SiC yields graphene layers with small grains (30-200 nm; refs 14-16). Here, we show that the ex situ graphitization of Si-terminated SiC(0001) in an argon atmosphere of about 1 bar produces monolayer graphene films with much larger domain sizes than previously attainable. Raman spectroscopy and Hall measurements confirm the improved quality of the films thus obtained. High electronic mobilities were found, which reach =2,000 cm 2 V 1 s 1 at T=27 K. The new growth process introduced here establishes a method for the synthesis of graphene films on a technologically viable basis.

FAU-Autorinnen und Autoren / FAU-Herausgeberinnen und Herausgeber

Jobst, Johannes
Lehrstuhl für Angewandte Physik
Ley, Lothar Prof. Dr.
Naturwissenschaftliche Fakultät
Seyller, Thomas PD Dr.
Naturwissenschaftliche Fakultät
Waldmann, Daniel
Lehrstuhl für Angewandte Physik
Weber, Heiko B. Prof. Dr.
Lehrstuhl für Angewandte Physik

Zusätzliche Organisationseinheit(en)
Exzellenz-Cluster Engineering of Advanced Materials

Einrichtungen weiterer Autorinnen und Autoren

University of California, Berkeley


Lehrstuhl für Angewandte Physik
B Nanoelectronic Materials
Exzellenz-Cluster Engineering of Advanced Materials


Emtsev, K., Bostwick, A., Horn, K., Jobst, J., Kellogg, G.L., Ley, L.,... Seyller, T. (2009). Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Materials, 8, 203-207.

Emtsev, Konstantin, et al. "Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide." Nature Materials 8 (2009): 203-207.


Zuletzt aktualisiert 2018-08-09 um 07:10