Coexistence of both gyroid chiralities in individual butterfly wing scales of Callophrys rubi

Journal article


Publication Details

Author(s): Winter B, Butz B, Dieker C, Schroeder-Turk GE, Mecke K, Spiecker E
Journal: Proceedings of the National Academy of Sciences of the United States of America
Publisher: National Academy of Sciences
Publication year: 2015
Volume: 112
Journal issue: 42
Pages range: 12911-12916
ISSN: 0027-8424


Abstract


The wing scales of the Green Hairstreak butterfly Callophrys rubi consist of crystalline domains with sizes of a few micrometers, which exhibit a congenitally handed porous chitin microstructure identified as the chiral triply periodic single-gyroid structure. Here, the chirality and crystallographic texture of these domains are investigated by means of electron tomography. The tomograms unambiguously reveal the coexistence of the two enantiomeric forms of opposite handedness: the left- and right-handed gyroids. These two enantiomers appear with nonequal probabilities, implying that molecularly chiral constituents of the biological formation process presumably invoke a chiral symmetry break, resulting in a preferred enantiomeric form of the gyroid structure. Assuming validity of the formation model proposed by Ghiradella H (1989) J Morphol 202(1): 69-88 and Saranathan V, et al. (2010) Proc Natl Acad Sci USA 107(26): 11676-11681, where the two enantiomeric labyrinthine domains of the gyroid are connected to the extracellular and intra-SER spaces, our findings imply that the structural chirality of the single gyroid is, however, not caused by the molecular chirality of chitin. Furthermore, the wing scales are found to be highly textured, with a substantial fraction of domains exhibiting the < 001 > directions of the gyroid crystal aligned parallel to the scale surface normal. Both findings are needed to completely understand the photonic purpose of the single gyroid in gyroid-forming butterflies. More importantly, they show the level of control that morphogenesis exerts over secondary features of biological nanostructures, such as chirality or crystallographic texture, providing inspiration for biomimetic replication strategies for synthetic self-assembly mechanisms.



FAU Authors / FAU Editors

Butz, Benjamin Dr.
Lehrstuhl für Werkstoffwissenschaften (Mikro- und Nanostrukturforschung)
Dieker, Christel
Lehrstuhl für Werkstoffwissenschaften (Mikro- und Nanostrukturforschung)
Mecke, Klaus Prof. Dr.
Lehrstuhl für Theoretische Physik
Spiecker, Erdmann Prof. Dr.
Lehrstuhl für Werkstoffwissenschaften (Mikro- und Nanostrukturforschung)
Apeleo Zubiri, Benjamin Dr.-Ing.
Lehrstuhl für Werkstoffwissenschaften (Mikro- und Nanostrukturforschung)


Additional Organisation
Exzellenz-Cluster Engineering of Advanced Materials
Interdisziplinäres Zentrum, Center for Nanoanalysis and Electron Microscopy (CENEM)
Lehrstuhl für Werkstoffwissenschaften (Mikro- und Nanostrukturforschung)


External institutions with authors

Murdoch University


Research Fields

A2 Nanoanalysis and Microscopy
Exzellenz-Cluster Engineering of Advanced Materials
A3 Multiscale Modeling and Simulation
Exzellenz-Cluster Engineering of Advanced Materials


How to cite

APA:
Winter, B., Butz, B., Dieker, C., Schroeder-Turk, G.E., Mecke, K., & Spiecker, E. (2015). Coexistence of both gyroid chiralities in individual butterfly wing scales of Callophrys rubi. Proceedings of the National Academy of Sciences of the United States of America, 112(42), 12911-12916. https://dx.doi.org/10.1073/pnas.1511354112

MLA:
Winter, Benjamin, et al. "Coexistence of both gyroid chiralities in individual butterfly wing scales of Callophrys rubi." Proceedings of the National Academy of Sciences of the United States of America 112.42 (2015): 12911-12916.

BibTeX: 

Last updated on 2019-29-05 at 15:10