Overcoming Interfacial Losses in Solution-Processed Organic Multi-Junction Solar Cells

Beitrag in einer Fachzeitschrift
(Originalarbeit)


Details zur Publikation

Autorinnen und Autoren: Du X, Lytken O, Killian M, Cao J, Stubhan T, Turbiez M, Schmuki P, Steinrück HP, Ding L, Fink R, Li N, Brabec C
Zeitschrift: Advanced Energy Materials
Verlag: Wiley-VCH Verlag
Jahr der Veröffentlichung: 2016
ISSN: 1614-6832
eISSN: 1614-6840
Sprache: Englisch


Abstract


Organic solar cells are promising in terms of full-solution-processing which enables low-cost and large-scale fabrication. While single-junction solar cells have seen a boost in power conversion efficiency (PCE), multi-junction solar cells are promising to further enhance the PCE. In all-solution-processed multi-junction solar cells, interfacial losses are often encountered between hole-transporting layer (HTL) and the active layers and therefore greatly limit the application of newly developed high-performance donor and acceptor materials in multi-junction solar cells. Here, the authors report on a systematic study of interface losses in both single-junction and multi-junction solar cells based on representative polymer donors and HTLs using electron spectroscopy and time-of-flight secondary ion mass spectrometry. It is found that a facile mixed HTL containing poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and MoO nanoparticles successfully overcomes the interfacial losses in both single- and multi-junction solar cells based on various active layers by reducing interface protonation, promoting better energy-level alignment, and forming a dense and smooth layer. Solution-processed single-junction solar cells are demonstrated to reach the same performance as with evaporated MoO (over 7%). Multi-junction solar cells with polymers containing nitrogen atoms as the first layer and the mixed PEDOT:PSS and MoO nanoparticles as hole extraction layer reach fill factor (FF) of over 60%, and PCE of over 8%, while the identical stack with pristine PEDOT:PSS or MoO nanoparticles show FF smaller than 50% and PCE less than 5%.



FAU-Autorinnen und Autoren / FAU-Herausgeberinnen und Herausgeber

Brabec, Christoph Prof. Dr.
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Du, Xiaoyan
Lehrstuhl für Physikalische Chemie II
Fink, Rainer Prof. Dr.
Professur für Physikalische Chemie
Killian, Manuela Dr.-Ing.
Lehrstuhl für Werkstoffwissenschaften (Korrosion und Oberflächentechnik)
Li, Ning Dr.-Ing.
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Lytken, Ole
Lehrstuhl für Physikalische Chemie II
Schmuki, Patrik Prof. Dr.
Lehrstuhl für Werkstoffwissenschaften (Korrosion und Oberflächentechnik)
Steinrück, Hans-Peter Prof. Dr.
Lehrstuhl für Physikalische Chemie II
Stubhan, Tobias Dr.-Ing.
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)


Zusätzliche Organisationseinheit(en)
Graduiertenkolleg 1896/2 In situ Mikroskopie mit Elektronen, Röntgenstrahlen und Rastersonden
Exzellenz-Cluster Engineering of Advanced Materials
Interdisziplinäres Zentrum, Center for Nanoanalysis and Electron Microscopy (CENEM)


Einrichtungen weiterer Autorinnen und Autoren

BASF Schweiz AG
National Center for Nanoscience and Technology (NCNST) / 国家纳米科学中心


Forschungsbereiche

D Catalytic Materials
Exzellenz-Cluster Engineering of Advanced Materials
B Nanoelectronic Materials
Exzellenz-Cluster Engineering of Advanced Materials


Zitierweisen

APA:
Du, X., Lytken, O., Killian, M., Cao, J., Stubhan, T., Turbiez, M.,... Brabec, C. (2016). Overcoming Interfacial Losses in Solution-Processed Organic Multi-Junction Solar Cells. Advanced Energy Materials. https://dx.doi.org/10.1002/aenm.201601959

MLA:
Du, Xiaoyan, et al. "Overcoming Interfacial Losses in Solution-Processed Organic Multi-Junction Solar Cells." Advanced Energy Materials (2016).

BibTeX: 

Zuletzt aktualisiert 2019-09-08 um 09:03