FIMOR: An efficient simulation for ZnO quantum dot ripening applied to the optimization of nanoparticle synthesis

Beitrag in einer Fachzeitschrift


Details zur Publikation

Autorinnen und Autoren: Haderlein M, Segets D, Gröschel M, Pflug L, Leugering G, Peukert W
Zeitschrift: Chemical Engineering Journal
Verlag: Elsevier BV
Jahr der Veröffentlichung: 2015
Band: 260
Seitenbereich: 706--715
ISSN: 0300-9467


Abstract


This work presents the application of a Fully Implicit Method for Ostwald Ripening (FIMOR) for simulating the ripening of ZnO quantum dots (QDs). Its stable numerics allow FIMOR to employ the full exponential term of the Gibbs–Thomson equation which significantly outperforms the common Taylor-approximation at typical QD sizes below 10 nm. The implementation is consistent with experimental data for temperatures between 10 and 50 °C and the computational effort is reduced by a factor of 100–1000 compared to previous approaches. This reduced the simulation time on a standard PC from several hours to a few minutes. In the second part, we demonstrate the high potential and accuracy of FIMOR by its application to several challenging studies. First, we compare numeric results obtained for ripening of ZnO QDs exposed to temperature ramps with experimental data. The deviation between simulation and experiment in the mean volume weighted particle size was as small as 5\%. Second, a map for the process parameter space spanned by ripening time and temperature is created based on a large number (>50) of FIMOR runs. From this map appropriate process parameters to adjust a desired dispersity are easily deduced. Further data analysis reveals in agreement with literature findings that the particle size distribution converges towards a self-preserving stable shape. Equations describing the time dependent particle size distribution with high accuracy are presented. Finally, we realized the transfer from low volume batch experiments to continuous QD processing. We modeled the continuous ZnO synthesis in a fully automated microreaction plant and found an excellent agreement between the numeric prediction and the experimental results by considering the residence time distribution.



FAU-Autorinnen und Autoren / FAU-Herausgeberinnen und Herausgeber

Gröschel, Michael
Lehrstuhl für Angewandte Mathematik
Haderlein, Michael
Lehrstuhl für Feststoff- und Grenzflächenverfahrenstechnik
Leugering, Günter Prof. Dr.
Lehrstuhl für Angewandte Mathematik
Peukert, Wolfgang Prof. Dr.-Ing.
Lehrstuhl für Feststoff- und Grenzflächenverfahrenstechnik
Pflug, Lukas Dr.
Lehrstuhl für Angewandte Mathematik
Segets, Doris Dr.-Ing.
Lehrstuhl für Feststoff- und Grenzflächenverfahrenstechnik


Zusätzliche Organisationseinheit(en)
Exzellenz-Cluster Engineering of Advanced Materials


Forschungsbereiche

A1 Functional Particle Systems
Exzellenz-Cluster Engineering of Advanced Materials
A3 Multiscale Modeling and Simulation
Exzellenz-Cluster Engineering of Advanced Materials


Zitierweisen

APA:
Haderlein, M., Segets, D., Gröschel, M., Pflug, L., Leugering, G., & Peukert, W. (2015). FIMOR: An efficient simulation for ZnO quantum dot ripening applied to the optimization of nanoparticle synthesis. Chemical Engineering Journal, 260, 706--715. https://dx.doi.org/10.1016/j.cej.2014.09.040

MLA:
Haderlein, Michael, et al. "FIMOR: An efficient simulation for ZnO quantum dot ripening applied to the optimization of nanoparticle synthesis." Chemical Engineering Journal 260 (2015): 706--715.

BibTeX: 

Zuletzt aktualisiert 2018-29-06 um 09:23