A practical framework for the construction of prolongation operators for multigrid based on canonical basis functions
Beitrag in einer Fachzeitschrift
Details zur Publikation
Autor(en): Roman W, Köstler H
Zeitschrift: → Computing and Visualization in Science |
Verlag: Springer Verlag
Jahr der Veröffentlichung: 2010
Band: 13
Heftnummer: 8
Seitenbereich: 207-220
ISSN: 1432-9360
Abstract
We discuss a general framework for the construction of prolongation operators for multigrid methods. It turns out that classical black-box prolongation or prolongation operators based on smoothed aggregation can be classified as special cases. The approach is suitable both for geometric and for purely algebraic multigrid settings. It allows for a simple and efficient implementation and parallelization by introducing canonical basis functions. We show numerical results for several diffusion problems with strongly varying or jumping coefficients. As one possible application for our method we choose three-dimensional medical image segmentation. In addition to that a nonsymmetric convection-diffusion problem is presented. © 2010 Springer-Verlag.
FAU-Autoren / FAU-Herausgeber
| Köstler, Harald Prof. Dr. |
| | Lehrstuhl für Informatik 10 (Systemsimulation) |
|
Zitierweisen
APA: | Roman, W., & Köstler, H. (2010). A practical framework for the construction of prolongation operators for multigrid based on canonical basis functions. Computing and Visualization in Science, 13(8), 207-220. https://dx.doi.org/10.1007/s00791-010-0138-0 |
MLA: | Roman, Wienands, and Harald Köstler. "A practical framework for the construction of prolongation operators for multigrid based on canonical basis functions." Computing and Visualization in Science 13.8 (2010): 207-220. |