Quasi-epitaxial Metal-Halide Perovskite Ligand Shells on PbS Nanocrystals

Beitrag in einer Fachzeitschrift
(Originalarbeit)


Details zur Publikation

Autorinnen und Autoren: Sytnyk M, Yakunin S, Schoefberger W, Lechner RT, Burian M, Ludescher L, Killilea NA, Yousefi Amin AA, Kriegner D, Stangl J, Groiss H, Heiß W
Zeitschrift: Acs Nano
Verlag: AMER CHEMICAL SOC
Jahr der Veröffentlichung: 2017
Band: 11
Heftnummer: 2
Seitenbereich: 1246-1256
ISSN: 1936-0851
Sprache: Englisch


Abstract


Epitaxial growth techniques enable nearly defect free heterostructures with coherent interfaces, which are of utmost importance for high performance electronic devices. While high-vacuum technology-based growth techniques are state-of-the art, here we pursue a purely solution processed approach to obtain nanocrystals with eptaxially coherent and quasi-lattice matched inorganic ligand shells. Octahedral metal-halide clusters, respectively 0-dimensional perovskites, were employed as ligands to match the coordination geometry of the PbS cubic rock-salt lattice. Different clusters (CH3NH3+)((6-x))[M((x+))Hal(6)]((6-x))-(Mx+ = Pb(II), Bi(III), Mn(II), In(III), Hal = Cl, I) were attached to the nanocrystal surfaces via a scalable phase transfer procedure. The ligand attachment and coherence of the formed PbS/ligand core/shell interface was confirmed by combining the results from transmission electron microscopy, small-angle X-ray scattering, nuclear magnetic resonance spectroscopy and powder X-ray diffraction. The lattice mismatch between ligand shell and nanocrystal core plays a key role in performance. In photoconducting devices the best performance (detectivity of 2 X 10(11) cm Hz (1/2)/W with > 110 kHz bandwidth) was obtained with (CH3NH3)(3)BiI6 ligands, providing the smallest relative lattice mismatch of ca. -1%. PbS nanocrystals with such ligands exhibited in millimeter sized bulk samples in the form of pressed pellets a relatively high carrier mobility for nanocrystal solids of similar to 1.3 cm(2)/(V s), a carrier lifetime of similar to 70 mu s, and a low residual carrier concentration of 2.6 X 10(13) cm(-3). Thus, by selection of ligands with appropriate geometry and bond lengths optimized quasi-epitaxial ligand shells were formed on nanocrystals, which are beneficial for applications in optoelectronics.



FAU-Autorinnen und Autoren / FAU-Herausgeberinnen und Herausgeber

Heiß, Wolfgang Prof. Dr.
Professur für Werkstoffwissenschaften (lösungsprozessierte Halbleitermaterialien)
Killilea, Niall Andrew
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Sytnyk, Mykhailo
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Yousefi Amin, Amir Abbas
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)


Zusätzliche Organisationseinheit(en)
Technische Fakultät
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)


Einrichtungen weiterer Autorinnen und Autoren

Johannes Kepler Universität (JKU) Linz
Montanuniversität Leoben


Forschungsbereiche

Neue Materialien und Prozesse
Forschungsschwerpunkt einer Fakultät: Technische Fakultät


Zitierweisen

APA:
Sytnyk, M., Yakunin, S., Schoefberger, W., Lechner, R.T., Burian, M., Ludescher, L.,... Heiß, W. (2017). Quasi-epitaxial Metal-Halide Perovskite Ligand Shells on PbS Nanocrystals. Acs Nano, 11(2), 1246-1256. https://dx.doi.org/10.1021/acsnano.6b04721

MLA:
Sytnyk, Mykhailo, et al. "Quasi-epitaxial Metal-Halide Perovskite Ligand Shells on PbS Nanocrystals." Acs Nano 11.2 (2017): 1246-1256.

BibTeX: 

Zuletzt aktualisiert 2019-02-09 um 07:11