Controlling additive behavior to reveal an alternative morphology formation mechanism in polymer: Fullerene bulk-heterojunctions

Journal article
(Original article)


Publication Details

Author(s): Güldal NS, Berlinghof M, Kassar T, Du X, Jiao X, Meyer M, Ameri T, Osvet A, Li N, Destri GL, Fink R, Ade H, Unruh T, Brabec C
Journal: Journal of Materials Chemistry A
Publication year: 2016
Volume: 4
Journal issue: 41
Pages range: 16136-16147
ISSN: 2050-7496
Language: English


Abstract


One of the most employed morphology optimization methods to design better performing organic photovoltaic devices is ink formulation engineering with additives. In this work, by employing a suboptimal host solvent mixture and 1,8-diiodooctane (DIO) as a very optimal solvent for both components in poly-thieno[3,2b]thiophene-diketopyrrolopyrrole-co-thiophene (DPP-TT-T)-based bulk-heterojunctions (BHJ), an alternative, previously unknown mechanism of additive behavior on BHJ microstructure formation is presented. In situ characterization methods involving grazing incidence X-ray diffraction, white-light reflectometry, laser light scattering and photoluminescence during film drying reveal that the microstructure formation under the influence of DIO is led towards thermodynamic equilibrium during host solvent drying, and the kinetics of morphology formation (i.e. polymer crystallization, fullerene aggregation...) are controlled dominantly by the additive during its evaporation. Ex situ X-ray-based characterization methods, such as scanning transmission X-ray microspectroscopy (STXM) and resonant soft X-ray scattering (R-SoXS), additionally reveal that the microstructure of dried films favors smaller domain sizes with purer domains, smaller fullerene aggregates, bimodal polymer crystallization relative to the substrate and more face-on molecular orientation relative to the donor/acceptor interface, which at the end lead to better performing devices with power conversion efficiencies ranging from 1.25% to 4.68%.



FAU Authors / FAU Editors

Ameri, Tayebeh Dr.
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Berlinghof, Marvin
Lehrstuhl für Kristallographie und Strukturphysik
Brabec, Christoph Prof. Dr.
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Du, Xiaoyan
Professur für Physikalische Chemie
Fink, Rainer Prof. Dr.
Professur für Physikalische Chemie
Güldal, Nusret Sena
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Kassar, Thaer
Professur für Nanomaterialcharakterisierung (Streumethoden)
Li, Ning Dr.-Ing.
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Meyer, Markus
Lehrstuhl für Physikalische Chemie I
Osvet, Andres Dr.
Lehrstuhl für Werkstoffwissenschaften (Materialien der Elektronik und der Energietechnologie)
Unruh, Tobias Prof. Dr.
Professur für Nanomaterialcharakterisierung (Streumethoden)


Additional Organisation
Exzellenz-Cluster Engineering of Advanced Materials
Graduiertenkolleg 1896/2 In situ Mikroskopie mit Elektronen, Röntgenstrahlen und Rastersonden


External institutions
European Synchrotron Radiation Facility (ESRF)
North Carolina State University


How to cite

APA:
Güldal, N.S., Berlinghof, M., Kassar, T., Du, X., Jiao, X., Meyer, M.,... Brabec, C. (2016). Controlling additive behavior to reveal an alternative morphology formation mechanism in polymer: Fullerene bulk-heterojunctions. Journal of Materials Chemistry A, 4(41), 16136-16147. https://dx.doi.org/10.1039/c6ta07023j

MLA:
Güldal, Nusret Sena, et al. "Controlling additive behavior to reveal an alternative morphology formation mechanism in polymer: Fullerene bulk-heterojunctions." Journal of Materials Chemistry A 4.41 (2016): 16136-16147.

BibTeX: 

Last updated on 2018-06-08 at 22:09