Computational Homogenisation using Reduced-Order Modelling applied to Hyperelasticity

Journal article


Publication Details

Author(s): Soldner D, Brands B, Zabihyan R, Steinmann P, Mergheim J
Journal: Proceedings in Applied Mathematics and Mechanics
Publication year: 2016
Volume: 16
Journal issue: 1
Pages range: 551-552
ISSN: 1617-7061


Abstract


Within this study nonlinear reduced-order modelling for hyperelastic material is applied for the boundary value problem on the micro-scale which arises in the context of computational homogenisation. This involves the Proper Orthogonal Decomposition and the Discrete Empirical Interpolation Method for the nonlinear term. Considered error measures are the errors of the displacement field, the averaged stresses and the effective elasticity tensor.



FAU Authors / FAU Editors

Brands, Benjamin
Steinmann, Paul Prof. Dr.-Ing.
Lehrstuhl für Technische Mechanik
Lehrstuhl für Technische Mechanik
Mergheim, Julia PD Dr.
Zabihyan, Reza
Lehrstuhl für Technische Mechanik
Lehrstuhl für Technische Mechanik
Soldner, Dominic
Lehrstuhl für Technische Mechanik


How to cite

APA:
Soldner, D., Brands, B., Zabihyan, R., Steinmann, P., & Mergheim, J. (2016). Computational Homogenisation using Reduced-Order Modelling applied to Hyperelasticity. Proceedings in Applied Mathematics and Mechanics, 16(1), 551-552. https://dx.doi.org/10.1002/pamm.201610264

MLA:
Soldner, Dominic, et al. "Computational Homogenisation using Reduced-Order Modelling applied to Hyperelasticity." Proceedings in Applied Mathematics and Mechanics 16.1 (2016): 551-552.

BibTeX: 

Last updated on 2018-11-08 at 02:30