Improving the Charge Transport in Self-Assembled Monolayer Field-Effect Transistors: From Theory to Devices

Jäger C, Schmaltz T, Novak M, Khassanov A, Vorobiev A, Hennemann M, Krause A, Dietrich H, Zahn D, Hirsch A, Halik M, Clark T (2013)


Publication Language: English

Publication Type: Journal article, Original article

Publication year: 2013

Journal

Original Authors: Jäger C.M., Schmaltz T., Novak M., Khassanov A., Vorobiev A., Hennemann M., Krause A., Dietrich H., Zahn D., Hirsch A., Halik M., Clark T.

Publisher: American Chemical Society

Book Volume: 135

Pages Range: 4893-4900

Journal Issue: 12

DOI: 10.1021/ja401320n

Abstract

A three-pronged approach has been used to design rational improvements in self-assembled monolayer field-effect transistors: classical molecular dynamics (MD) simulations to investigate atomistic structure, large-scale quantum mechanical (QM) calculations for electronic properties, and device fabrication and characterization as the ultimate goal. The MD simulations reveal the effect of using two-component monolayers to achieve intact dielectric insulating layers and a well-defined semiconductor channel. The QM calculations identify improved conduction paths in the monolayers that consist of an optimum mixing ratio of the components. These results have been used both to confirm the predictions of the calculations and to optimize real devices. Monolayers were characterized with X-ray reflectivity measurements and by electronic characterization of complete devices. © 2013 American Chemical Society.

Authors with CRIS profile

Additional Organisation(s)

Involved external institutions

How to cite

APA:

Jäger, C., Schmaltz, T., Novak, M., Khassanov, A., Vorobiev, A., Hennemann, M.,... Clark, T. (2013). Improving the Charge Transport in Self-Assembled Monolayer Field-Effect Transistors: From Theory to Devices. Journal of the American Chemical Society, 135(12), 4893-4900. https://dx.doi.org/10.1021/ja401320n

MLA:

Jäger, Christof, et al. "Improving the Charge Transport in Self-Assembled Monolayer Field-Effect Transistors: From Theory to Devices." Journal of the American Chemical Society 135.12 (2013): 4893-4900.

BibTeX: Download