The MyoRobot: A novel automated biomechatronics system to assess voltage/Ca2+ biosensors and active/passive biomechanics in muscle and biomaterials

Journal article


Publication Details

Author(s): Haug M, Reischl B, Prölß G, Pollmann C, Buckert T, Keidel C, Schürmann S, Hock M, Rupitsch S, Heckel M, Pöschel T, Scheibel T, Haynl C, Kiriaev L, Head SI, Friedrich O
Journal: Biosensors and Bioelectronics
Publication year: 2018
Volume: 102
Pages range: 589-599
ISSN: 0956-5663


Abstract


We engineered an automated biomechatronics system, MyoRobot, for robust objective and versatile assessment of muscle or polymer materials (bio-)mechanics. It covers multiple levels of muscle biosensor assessment, e.g. membrane voltage or contractile apparatus Ca2+ ion responses (force resolution 1 µN, 0–10 mN for the given sensor; [Ca2+] range ~ 100 nM–25 µM). It replaces previously tedious manual protocols to obtain exhaustive information on active/passive biomechanical properties across various morphological tissue levels. Deciphering mechanisms of muscle weakness requires sophisticated force protocols, dissecting contributions from altered Ca2+ homeostasis, electro-chemical, chemico-mechanical biosensors or visco-elastic components. From whole organ to single fibre levels, experimental demands and hardware requirements increase, limiting biomechanics research potential, as reflected by only few commercial biomechatronics systems that can address resolution, experimental versatility and mostly, automation of force recordings. Our MyoRobot combines optical force transducer technology with high precision 3D actuation (e.g. voice coil, 1 µm encoder resolution; stepper motors, 4 µm feed motion), and customized control software, enabling modular experimentation packages and automated data pre-analysis. In small bundles and single muscle fibres, we demonstrate automated recordings of (i) caffeine-induced-, (ii) electrical field stimulation (EFS)-induced force, (iii) pCa-force, (iv) slack-tests and (v) passive length-tension curves. The system easily reproduces results from manual systems (two times larger stiffness in slow over fast muscle) and provides novel insights into unloaded shortening velocities (declining with increasing slack lengths). The MyoRobot enables automated complex biomechanics assessment in muscle research. Applications also extend to material sciences, exemplarily shown here for spider silk and collagen biopolymers.


FAU Authors / FAU Editors

Friedrich, Oliver Prof. Dr. Dr.
Lehrstuhl für Medizinische Biotechnologie
Haug, Michael
Lehrstuhl für Medizinische Biotechnologie
Heckel, Michael
Lehrstuhl für Multiscale Simulation of Particulate Systems
Keidel, Christian
Lehrstuhl für Sensorik
Meyer, Charlotte
Lehrstuhl für Medizinische Biotechnologie
Pöschel, Thorsten Prof. Dr.
Lehrstuhl für Multiscale Simulation of Particulate Systems
Prölß, Gerhard
Lehrstuhl für Medizinische Biotechnologie
Reischl, Barbara
Lehrstuhl für Medizinische Biotechnologie
Rupitsch, Stefan PD Dr.
Lehrstuhl für Sensorik
Schürmann, Sebastian Dr. rer. nat.
Lehrstuhl für Medizinische Biotechnologie


External institutions
Universität Bayreuth
University of New South Wales (UNSW)


How to cite

APA:
Haug, M., Reischl, B., Prölß, G., Pollmann, C., Buckert, T., Keidel, C.,... Friedrich, O. (2018). The MyoRobot: A novel automated biomechatronics system to assess voltage/Ca2+ biosensors and active/passive biomechanics in muscle and biomaterials. Biosensors and Bioelectronics, 102, 589-599. https://dx.doi.org/10.1016/j.bios.2017.12.003

MLA:
Haug, Michael, et al. "The MyoRobot: A novel automated biomechatronics system to assess voltage/Ca2+ biosensors and active/passive biomechanics in muscle and biomaterials." Biosensors and Bioelectronics 102 (2018): 589-599.

BibTeX: 

Last updated on 2019-02-01 at 05:10