Phosphonate- and Carboxylate-Based Self-Assembled Monolayers for Organic Devices: A Theoretical Study of Surface Binding on Aluminum Oxide with Experimental Support

Journal article
(Report)


Publication Details

Author(s): Bauer T, Schmaltz T, Lenz T, Halik M, Meyer B, Clark T
Journal: ACS Applied Materials and Interfaces
Publication year: 2013
Volume: 5
Journal issue: 13
Pages range: 6073--6080
ISSN: 1944-8244
eISSN: 1944-8252
Language: English


Abstract


We report a computational study on the chemical bonding of phosphonates and carboxylates to aluminum oxide surfaces and how the binding properties are related to the amount of water in the experimental environment. Two different surface structures were used in the calculations in order to model representative adsorption sites for the phosphonates and carboxylates and to account for the amorphous nature of the hydroxylated AlOx films in experiment. For the phosphonates, we find that the thermodynamically preferred binding mode changes between mono-, bi-, and tridentate depending on the surface structure and the amount of residual water. For the carboxylates, on the other hand, monodentate adsorption is always lower in energy at all experimental conditions. Phosphonates are more strongly bound to aluminum oxide than carboxylates, so that carboxylates can be replaced easily by phosphonates. The theoretical findings are consistent with those obtained in adsorption, desorption, and exchange reactions of n-alkyl phosphonic and carboxylic acids on AlOx surfaces. The results provide an atomistic understanding of the adsorption and help to optimize experimental conditions for self-assembly of organic films on aluminum oxide surfaces.



FAU Authors / FAU Editors

Bauer, Thilo
Halik, Marcus Prof. Dr.
Computer-Chemie-Centrum
Clark, Timothy apl. Prof. Dr.
Computer-Chemie-Centrum
Professur für Werkstoffwissenschaften (Polymerwerkstoffe)
Professur für Computational Chemistry
Lenz, Thomas
Professur für Werkstoffwissenschaften (Polymerwerkstoffe)
Meyer, Bernd Prof. Dr.
Schmaltz, Thomas
Professur für Werkstoffwissenschaften (Polymerwerkstoffe)


Additional Organisation
Exzellenz-Cluster Engineering of Advanced Materials


Research Fields

B Nanoelectronic Materials
Exzellenz-Cluster Engineering of Advanced Materials
A3 Multiscale Modeling and Simulation
Exzellenz-Cluster Engineering of Advanced Materials


How to cite

APA:
Bauer, T., Schmaltz, T., Lenz, T., Halik, M., Meyer, B., & Clark, T. (2013). Phosphonate- and Carboxylate-Based Self-Assembled Monolayers for Organic Devices: A Theoretical Study of Surface Binding on Aluminum Oxide with Experimental Support. ACS Applied Materials and Interfaces, 5(13), 6073--6080. https://dx.doi.org/10.1021/am4008374

MLA:
Bauer, Thilo, et al. "Phosphonate- and Carboxylate-Based Self-Assembled Monolayers for Organic Devices: A Theoretical Study of Surface Binding on Aluminum Oxide with Experimental Support." ACS Applied Materials and Interfaces 5.13 (2013): 6073--6080.

BibTeX: 

Last updated on 2019-15-05 at 10:33

Share link