A Discontinuous Galerkin Method for the Subjective Surfaces Problem

Journal article


Publication Details

Author(s): Bungert L, Aizinger V, Fried M
Journal: Journal of Mathematical Imaging and Vision
Publication year: 2016
Pages range: in press
ISSN: 1573-7683
Language: English


Abstract


The work formulates and evaluates the local discontinuous Galerkin method for the subjective surfaces problem based on the curvature driven level set equation. A new mixed formulation simplifying the treatment of nonlinearities is proposed. The numerical algorithm is evaluated using several artificial and realistic test cases.



FAU Authors / FAU Editors

Aizinger, Vadym, Ph.D.
Professur für Angewandte Mathematik (Wissenschaftliches Rechnen)
Bungert, Leon
Lehrstuhl für Angewandte Mathematik (Wissenschaftliches Rechnen)
Fried, Michael Dr.
Lehrstuhl für Angewandte Mathematik (Wissenschaftliches Rechnen)


How to cite

APA:
Bungert, L., Aizinger, V., & Fried, M. (2016). A Discontinuous Galerkin Method for the Subjective Surfaces Problem. Journal of Mathematical Imaging and Vision, in press. https://dx.doi.org/10.1007/s10851-016-0695-z

MLA:
Bungert, Leon, Vadym Aizinger, and Michael Fried. "A Discontinuous Galerkin Method for the Subjective Surfaces Problem." Journal of Mathematical Imaging and Vision (2016): in press.

BibTeX: 

Last updated on 2019-16-03 at 13:48