A Discontinuous Galerkin Method for the Subjective Surfaces Problem

Journal article


Publication Details

Author(s): Bungert L, Aizinger V, Fried M
Journal: Journal of Mathematical Imaging and Vision
Publication year: 2016
Pages range: in press
ISSN: 1573-7683
Language: English


Abstract


The work formulates and evaluates the local discontinuous Galerkin method for the subjective surfaces problem based on the curvature driven level set equation. A new mixed formulation simplifying the treatment of nonlinearities is proposed. The numerical algorithm is evaluated using several artificial and realistic test cases.



FAU Authors / FAU Editors

Aizinger, Vadym, Ph.D.
Professur für Angewandte Mathematik (Wissenschaftliches Rechnen)
Bungert, Leon
Lehrstuhl für Angewandte Mathematik
Fried, Michael Dr.
Lehrstuhl für Angewandte Mathematik


How to cite

APA:
Bungert, L., Aizinger, V., & Fried, M. (2016). A Discontinuous Galerkin Method for the Subjective Surfaces Problem. Journal of Mathematical Imaging and Vision, in press. https://dx.doi.org/10.1007/s10851-016-0695-z

MLA:
Bungert, Leon, Vadym Aizinger, and Michael Fried. "A Discontinuous Galerkin Method for the Subjective Surfaces Problem." Journal of Mathematical Imaging and Vision (2016): in press.

BibTeX: 

Last updated on 2019-16-03 at 13:48