Hierarchical Hybrid Grids for Mantle Convection: A First Study

Conference contribution


Publication Details

Author(s): Gmeiner B, Mohr M, Rüde U
Editor(s): FAU Erlangen
Title edited volumes: Proceedings - 2012 11th International Symposium on Parallel and Distributed Computing, ISPDC 2012
Publication year: 2012
Conference Proceedings Title: Proceedings of the 11th International Symposium on Parallel and Distributed Computing
Pages range: 309-314
ISBN: 978-1-4673-2599-8


Abstract

In this article we consider the application of the Hierarchical Hybrid Grid Framework (HHG) to the geodynamical problem of simulating mantle convection. We describe the generation of a refined icosahedral grid and a further subdivision of the resulting prisms into tetrahedral elements. Based on this mesh, we present performance results for HHG and compare these to the also Finite Element program TERRA, which is a well-known code for mantle convection using a matrix-free representation of the stiffness matrix. In our analysis we consider the most time consuming part of TERRA's solution algorithm and evaluate it in a strong scaling setup. Finally we present strong and weak scaling results for HHG to verify its parallel concepts, algorithms and grid flexibility on Jugene. © 2012 IEEE.


FAU Authors / FAU Editors

Gmeiner, Björn Dr.-Ing.
Lehrstuhl für Informatik 10 (Systemsimulation)
Rüde, Ulrich Prof. Dr.
Lehrstuhl für Informatik 10 (Systemsimulation)


How to cite

APA:
Gmeiner, B., Mohr, M., & Rüde, U. (2012). Hierarchical Hybrid Grids for Mantle Convection: A First Study. In FAU Erlangen (Eds.), Proceedings of the 11th International Symposium on Parallel and Distributed Computing (pp. 309-314). München.

MLA:
Gmeiner, Björn, Marcus Mohr, and Ulrich Rüde. "Hierarchical Hybrid Grids for Mantle Convection: A First Study." Proceedings of the 11th International Symposium on Parallel and Distributed Computing, München Ed. FAU Erlangen, 2012. 309-314.

BibTeX: 

Last updated on 2018-17-08 at 13:53