Nucleophilic beta-oniovinylation: concept, mechanism, scope, and applications.

Weiss R, Bess M, Huber S, Heinemann FW (2008)


Publication Status: Published

Publication Type: Journal article

Publication year: 2008

Journal

Book Volume: 130

Pages Range: 4610-4617

Journal Issue: 14

DOI: 10.1021/ja071316a

Abstract

Insertion of an electron-deficient alkyne A-C[triple bond]C-A (A = CO2Me) into the C-L+ bond of an acyl-onio salt R-C(O)-L+ (R = Ar, OAlk; L = 4-dimethylaminopyridine, PPh3) has for the first time been achieved in the presence of catalytic amounts of the nucleophile L. For R = OMe, a second insertion of the alkyne was observed. X-ray structures were obtained for a number of such beta-oniovinylation products. Depending on reaction conditions, preferentially E- or Z-stereochemistry was observed, the Z-isomer being the thermodynamically more stable. A mechanism for this novel insertion reaction is presented which accounts for the topology of the products and rationalizes the observed stereochemistry. The beta-onio-activated Michael systems thus generated represent a virtually unexplored class of compounds. The onio substituent in such compounds can be selectively replaced by a number of nucleophiles. Thus a series of Michael systems with donor functions in the beta-position is easily synthesized. These compounds represent a source for useful further transformations, for example, cyclizations to quinolones, thiochromones, and pyrazoles.

Authors with CRIS profile

How to cite

APA:

Weiss, R., Bess, M., Huber, S., & Heinemann, F.W. (2008). Nucleophilic beta-oniovinylation: concept, mechanism, scope, and applications. Journal of the American Chemical Society, 130(14), 4610-4617. https://doi.org/10.1021/ja071316a

MLA:

Weiss, Robert, et al. "Nucleophilic beta-oniovinylation: concept, mechanism, scope, and applications." Journal of the American Chemical Society 130.14 (2008): 4610-4617.

BibTeX: Download