HHG - Hierarchical Hybrid Grids

Internally funded project

Project Details

Project leader:
Prof. Dr. Ulrich Rüde

Project members:
Dr.-Ing. Björn Gmeiner

Contributing FAU Organisations:
Lehrstuhl für Informatik 10 (Systemsimulation)

Acronym: HHG
Start date: 01/01/2006

Abstract (technical / expert description):

HHG is a multigrid solver for finite elements on unstructured grids. The program takes a coarse input grid and refines it in a structured way. The resulting regular grid structure can be exploited using extremely memory-efficient data structures. This puts simulations of impressive scale into the realms of possibility. On HLRB II at the Leibniz Computing Centre Munich, a linear system of equations with 300 billion unknowns has been solved using 9170 processors.


Gmeiner, B., Köstler, H., Stürmer, M., & Rüde, U. (2015). Parallel multigrid on hierarchical hybrid grids: a performance study on current high performance computing clusters (vol 26, pg 217, 2014). Concurrency and Computation-Practice & Experience, 27(9), 2369-2369. https://dx.doi.org/10.1002/cpe.3557
Gmeiner, B., Mohr, M., & Rüde, U. (2012). Hierarchical Hybrid Grids for Mantle Convection: A First Study. In FAU Erlangen (Eds.), Proceedings of the 11th International Symposium on Parallel and Distributed Computing (pp. 309-314). München.
Gmeiner, B., Gradl, T., Köstler, H., & Rüde, U. (2012). Highly Parallel Geometric Multigrid Algorithm for Hierarchical Hybrid Grids. In NIC Symposium 2012 - Proceedings (pp. 323-330). Jülich, DE: Jülich: FZ Jülich.
Gmeiner, B., Gradl, T., Gaspar, F., & Rüde, U. (2012). Optimization of the multigrid-convergence rate on semi-structured meshes by local Fourier analysis. Computers and Mathematics with Applications, 65(4), 694-711. https://dx.doi.org/10.1016/j.camwa.2012.12.006
Gradl, T., & Rüde, U. (2008). High Performance Multigrid on Current Large Scale Parallel Computers. In 9th Workshop on Parallel Systems and Algorithms (PASA) (pp. 37-45). Dresden: Bonn: Gesellschaft für Informatik.
Freundl, C., Gradl, T., & Rüde, U. (2008). Towards Petascale Multilevel Finite-Element Solvers. In Petascale Computing. Algorithms and Applications (pp. 375-389). Boca Raton / London / New York: Chapman & Hall/CRC.
Bergen, B., Wellein, G., Hülsemann, F., & Rüde, U. (2007). Hierarchical hybrid grids: achieving TERAFLOP performance on large scale finite element simulations. International Journal of Parallel, Emergent and Distributed Systems, 22(4), 311-329. https://dx.doi.org/10.1080/17445760701442218
Gradl, T., Freundl, C., & Rüde, U. (2007). Scalability on All Levels for Ultra-Large Scale Finite Element Calculations.
Hülsemann, F., Bergen, B., Gradl, T., & Rüde, U. (2006). A Massively Parallel Multigrid Method for Finite Elements. Computing in Science & Engineering, 8(6), 56-62. https://dx.doi.org/10.1109/MCSE.2006.102

Last updated on 2019-19-03 at 15:06