Embodied Audition for RobotS

Drittmittelfinanzierte Gruppenförderung - Teilprojekt

Details zum übergeordneten Gesamtprojekt

Titel des Gesamtprojektes: Embodied Audition for RobotS

Details zum Projekt

Prof. Dr.-Ing. Walter Kellermann

Beteiligte FAU-Organisationseinheiten:
Professur für Nachrichtentechnik

Mittelgeber: EU - 7. RP / Cooperation / Verbundprojekt (CP)
Akronym: EARS
Projektstart: 01.01.2014
Projektende: 31.12.2016

Abstract (fachliche Beschreibung):

EARS will explore new algorithms for enhancing the auditive capabilities of humanoid robots A main focus is to develop the fundamentals for a natural spoken dialogue between humans and robots in adverse acoustical environments

The success of future natural intuitive human-robot interaction (HRI) will critically depend on how responsive the robot will be to all forms of human expressions and how well it will be aware of its environment. With acoustic signals distinctively characterizing physical environments and speech being the most effective means of communication among humans, truly humanoid robots must be able to fully extract the rich auditory information from their environment and to use voice communication as much as humans do. While vision-based HRI is well developed, current limitations in robot audition do not allow for such an effective, natural acoustic human-robot communication in real-world environments, mainly because of the severe degradation of the desired acoustic signals due to noise, interference and reverberation when captured by the robot's microphones. To overcome these limitations, EARS will provide intelligent "ears" with close-to-human auditory capabilities and use it for HRI in complex real-world environments. Novel microphone arrays and powerful signal processing algorithms shall be able to localize and track multiple sound sources of interest and to extract and recognize the desired signals. After fusion with robot vision, embodied robot cognition will then derive HRI actions and knowledge on the entire scenario, and feed this back to the acoustic interface for further auditory scene analysis. As a prototypical application, EARS will consider a welcoming robot in a hotel lobby offering all the above challenges. Representing a large class of generic applications, this scenario is of key interest to industry and, thus, a leading European robot manufacturer will integrate EARS's results into a robot platform for the consumer market and validate it. In addition, the provision of open-source software and an advisory board with key players from the relevant robot industry should help to make EARS a turnkey project for promoting audition in the robotics world.

Externe Partner

Institut national de Recherche en Informatique et en Automatique (INRIA)
Humboldt-Universität zu Berlin
Ben-Gurion University of the Negev (BGU) / אוניברסיטת בן-גוריון בנגב
Imperial College London / The Imperial College of Science, Technology and Medicine
Aldebaran Robotics SAS

Zuletzt aktualisiert 2018-10-08 um 13:57