Additive Manufacturing Aiming Towards Zero Waste & Efficient Production of High-Tech Metal Products

Drittmittelfinanzierte Gruppenförderung - Teilprojekt

Details zum übergeordneten Gesamtprojekt

Titel des Gesamtprojektes: Additive Manufacturing Aiming Towards Zero Waste & Efficient Production of High-Tech Metal Products

Details zum Projekt

Prof. Dr.-Ing. Carolin Körner

Beteiligte FAU-Organisationseinheiten:
Lehrstuhl für Werkstoffwissenschaften (Werkstoffkunde und Technologie der Metalle)

Mittelgeber: EU - 7. RP / Cooperation / Verbundprojekt (CP)
Akronym: AMAZE
Projektstart: 01.01.2013
Projektende: 30.06.2017


Numerische Simulation
Lehrstuhl für Werkstoffwissenschaften (Werkstoffkunde und Technologie der Metalle)
Additive Fertigung
Lehrstuhl für Werkstoffwissenschaften (Werkstoffkunde und Technologie der Metalle)

Abstract (fachliche Beschreibung):

The overarching goal of AMAZE is to rapidly produce large defect-free additively-manufactured (AM) metallic components up to 2 metres in size, ideally with close to zero waste, for use in the following high-tech sectors namely: aeronautics, space, automotive, nuclear fusion and tooling.

Four pilot-scale industrial AM factories will be established and enhanced, thereby giving EU manufacturers and end-users a world-dominant position with respect to AM production of high-value metallic parts, by 2016. A further aim is to achieve 50% cost reduction for finished parts, compared to traditional processing.

The project will design, demonstrate and deliver a modular streamlined work-flow at factory level, offering maximum processing flexibility during AM, a major reduction in non-added-value delays, as well as a 50% reduction in shop-floor space compared with conventional factories.

AMAZE will dramatically increase the commercial use of adaptronics, in-situ sensing, process feedback, novel post-processing and clean-rooms in AM, so that (i) overall quality levels are improved, (ii) dimensional accuracy is increased by 25% (iii) build rates are increased by a factor of 10, and (iv) industrial scrap rates are slashed to <5%.

Scientifically, the critical links between alloy composition, powder/wire production, additive processing, microstructural evolution, defect formation and the final properties of metallic AM parts will be examined and understood. This knowledge will be used to validate multi-level process models that can predict AM processes, part quality and performance.

In order to turn additive manufacturing into a mainstream industrial process, a sharp focus will also be drawn on pre-normative work, standardisation and certification, in collaboration with ISO, ASTM and ECSS.

The team comprises 31 partners: 21 from industry, 8 from academia and 2 from intergovernmental agencies. This represent the largest and most ambitious team ever assembled on this topic.

Externe Partner

Swansea University
Thales Alenia Space
BAE Systems plc
Monash University
Concept Laser GmbH
École Polytechnique Fédérale de Lausanne (EPFL)
EADS Deutschland
ESI Group
University of Manchester
UK Atomic Energy Authority
BCT Steuerungs- und DV-Systeme GmbH
Norsk Titanium (NTi)
AB Volvo
TRUMPF Laser- und Systemtechnik GmbH
Renishaw plc
Tecnalia Research & Innovation Foundation
Avioprop S.r.l.
The Manufactoring Technology Centre Limited (MTC)
Granta Design Ltd.
European Space Agency (ESA)
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Politecnico di Torino
Avio S.p.A
University of Birmingham
Cranfield University

Zuletzt aktualisiert 2017-06-07 um 10:44