Manufacturing and characterisation of a thermoelectric materials based on boron doped nanocrystalline diamond foils

Third party funded individual grant


Start date : 01.07.2013

End date : 31.03.2015


Project details

Short description

Thermoelectric generators (TEG) based on the Seebeck Effect can directly produce electrical current from the waste heat generated by cars or power plants for instance. The established TEG materials currently enable no economical use due to its toxicity, its rare availability (Bismuth- and Lead Tellurides) or its low efficiency (Silicon Germanium).Single crystalline and microcrystalline diamond have a very high thermal conductivity (ca. 2000W/mK) and a very low electrical conductivity, therefore diamond seems to be unsuitable as thermoelectric material. Nanocrystalline diamond foils can be produced by chemical vapour deposition of boron doped diamond on temperature stable templates. After deposition a controlled delamination of the complete nanodiamond layer as nanodiamond foil is possible. It is a promising thermoelectric material, due to its good electrical conductivity and low thermal conductivity (ca. 2 W/mK). Nano diamond is very stable at elevated temperatures (ca. 600°C in air, ca. 1100°C without oxygen). These properties should enable high thermoelectric efficiencies (ZT- value > 2-3). In this project we want to produce boron-dope Nanocrystalline diamond foils with by variation of the HF-CVD process parameters (pressure, methane content, boron content, coating temperature). The thermoelectric properties (Seebeck coefficient, thermal and electrical conductivity) will be measured. Furthermore a thermoelectric generator should be built and characterized by using the new boron-doped foils (p-conductivity) and "poor" (low effiency) N-doped carbon foils (n-conductivity).

Scientific Abstract

Zur nachhaltigen Nutzung der Abwärmemengen beispielsweise von Fahrzeugen oder Kraftwerken eignet sich die auf dem Seebeckeffekt beruhende Technik der thermoelektrischen Generatoren (TEG), die aus Temperaturdifferenzen direkt elektrischen Strom erzeugt. Die derzeitig etablierten thermoelektrischen Materialen lassen keinen wirtschaftlich sinnvollen Einsatz zu, weil sie entweder toxisch und nur in sehr geringen Mengen verfügbar sind (Bismut- und Bleitelluride), oder noch zu geringe Wirkungsgrade aufweisen (SiGe). Einkristalliner oder mikrokristalliner Diamant haben eine sehr hohe Wärmeleitfähigkeit (ca. 2000 W/mK) und eine sehr geringe elektrische Leitfähigkeit, weshalb sie als thermoelektrisches Material zunächst ungeeignet scheinen. Durch die Abscheidung von bordotiertem, nanokristallinem Diamant auf temperaturbeständigen Templaten im CVD-Verfahren und deren nachfolgende Ablösung können selbsttragende Diamantfolien hergestellt werden. Diese sind ein vielversprechendes thermoelektrisches Material, weil sie sowohl gute elektrische Leitfähigkeiten als auch niedrige Wärmeleitfähigkeiten (2 W/mK) aufweisen. Dazu sind sie und sehr temperaturbeständig (600 °C an Luft, 1100 °C unter Luftabschluss). Dadurch erscheinen hohe Wirkungsgrade (ZT-Werte 2-3) möglich. Im beantragten Projekt sollen bordotierte, p-leitende, nanokristalline Diamantfolien mit verschiedenen Prozessparametern (Druck, Methangehalt, Borgehalt, Beschichtungstemperatur) hergestellt und auf ihre thermoelektrischen Eigenschaften (Seebeckkoeffizient, thermische und elektrische Leitfähigkeit) untersucht werden. Außerdem sollen die p-Folien mit schon existierenden ("schlechten") n-Folien zu thermoelektrischen Generatoren verlötet und dann ebenfalls charakterisiert werden.

Involved:

Contributing FAU Organisations:

Funding Source

Research Areas