Precepetation process in Al-Mg-Si-Mn casting alloys

Third party funded individual grant


Start date : 01.10.2015

End date : 31.08.2019


Project details

Short description

With Al-Mg-Si-Mn casting alloys with compositions inside of the pseudobinary section of the subsequent ternary phase diagram, the effect of Zn, Ti, Sc and Ag additions on the precepetation of nanoparticels in as-cast and heat-treated conditions as well as mechanical properties under different conditions (as-cast, solution treated, quenched andaged) will be studied. Despite of the established foundry practce of several Al-Mg-Si-Mn and Al-Zn-Mg casting alloys subjected to high pressure die casting only little research was done either on structure formation or strengthening mechanisms of these alloys and mechanical properties that can be achieved after additional alloying.

In frame of this project as cast conditions of AlMg5Si2Mn alloyed by Zn, Ti, Sc and Ag will be investigated paying attention to precipitates formed in solid solution matrix prior to heat treatment and changes of mechanical properties from as-cast state to age hardened.

Scientific Abstract

With Al-Mg-Si-Mn casting alloys with compositions inside of the pseudobinary section of the subsequent ternary phase diagram, the effect of Zn, Ti, Sc and Ag additions on the precepetation of nanoparticels in as-cast and heat-treated conditions as well as mechanical properties under different conditions (as-cast, solution treated, quenched andaged) will be studied. Despite of the established foundry practce of several Al-Mg-Si-Mn and Al-Zn-Mg casting alloys subjected to high pressure die casting only little research was done either on structure formation or strengthening mechanisms of these alloys and mechanical properties that can be achieved after additional alloying.

In frame of this project as cast conditions of AlMg5Si2Mn alloyed by Zn, Ti, Sc and Ag will be investigated paying attention to precipitates formed in solid solution matrix prior to heat treatment and changes of mechanical properties from as-cast state to age hardened.

Involved:

Contributing FAU Organisations:

Funding Source

Research Areas