Interaction effects and gateless patterning in epitaxial graphene on silicon carbide (0001)

Third Party Funds Group - Sub project

Overall project details

Overall project: SPP 1459: Graphen


Project Details

Project leader:
Prof. Dr. Heiko Weber


Contributing FAU Organisations:
Lehrstuhl für Angewandte Physik

Funding source: DFG / Schwerpunktprogramm (SPP)
Start date: 01/10/2013


Research Fields

Graphene
Lehrstuhl für Angewandte Physik


Abstract (technical / expert description):


We will explore fundamental charge transport mechanisms in graphene, relying on the specific strengths of our material system, that is homogeneity, large-scale availability, and epitaxial control on the interface substrate-graphene.We will investigate low-temperature charge transport, where we will characterize the electron-electron-interaction corrections. By means of a refined data analysis, we will gain sensitivity to Kondo effect, which may allow to find a Kondo system. By controlled addition of structural defects we willstudy the transition from band transport to hopping transport. Special emphasis is on interaction effects in bilayer graphene. In a second line of experiments, we will pattern the chemical potential in the graphene layer laterally by means of locally selective intercalation, i.e. without the use of metallic gate electrodes. This will pave the way for novel experiments.


FAU Key Research Priorities
New Materials and Processes


External Partners

Technische Universität Chemnitz


Publications

Shallcross, S., Sharma, S., & Weber, H.B. (2017). Anomalous Dirac point transport due to extended defects in bilayer graphene. Nature Communications, 8(1), 342. https://dx.doi.org/10.1038/s41467-017-00397-8
Kißlinger, F., Popp, M.A., Jobst, J., Shallcross, S., & Weber, H.B. (2017). Charge-carrier transport in large-area epitaxial graphene. Annalen Der Physik, 2017. https://dx.doi.org/10.1002/andp.201700048
Kißlinger, F., Ott, C., & Weber, H.B. (2017). Origin of nonsaturating linear magnetoresistivity. Physical Review B, 95(2), 024204. https://dx.doi.org/10.1103/PhysRevB.95.024204
Sorger, C., Hertel, S., Jobst, J., Steiner, C., Meil, K., Ullmann, K.,... Weber, H.B. (2015). Gateless patterning of epitaxial graphene by local intercalation. Nanotechnology, 26, 025302. https://dx.doi.org/10.1088/0957-4484/26/2/025302
Kißlinger, F., Ott, C., Heide, C., Kampert, E., Butz, B., Spiecker, E.,... Weber, H.B. (2015). Linear magnetoresistance in mosaic-like bilayer graphene. Nature Physics, 11, 650-+. https://dx.doi.org/10.1038/NPHYS3368
Kautz, J., Jobst, J., Sorger, C., Tromp, R.M., Weber, H.B., & Van Der Molen, S.J. (2015). Low-Energy Electron Potentiometry: Contactless Imaging of Charge Transport on the Nanoscale. Scientific Reports, 5. https://dx.doi.org/10.1038/srep13604
Sorger, C., Preu, S., Schmidt, J., Winnerl, S., Bludov, Y., Peres, N.,... Weber, H.B. (2015). Terahertz response of patterned epitaxial graphene. New Journal of Physics, 17. https://dx.doi.org/10.1088/1367-2630/17/5/053045
Jobst, J., Kißlinger, F., & Weber, H.B. (2013). Detection of the Kondo effect in the resistivity of graphene: Artifacts and strategies. Physical Review B, 88(15), 155412. https://dx.doi.org/10.1103/PhysRevB.88.155412

Last updated on 2019-13-02 at 08:26