Prof. Dr. Kristina Giesel



Organisation


Professur für Theoretische Physik


Publications (Download BibTeX)

Go to first page Go to previous page 1 of 4 Go to next page Go to last page

Giesel, K., Singh, P., & Winnekens, D. (2019). Dynamics of Dirac observables in canonical cosmological perturbation theory. Classical and Quantum Gravity, 36(8), 085009. https://dx.doi.org/10.1088/1361-6382/ab0ed3
Kobler, M., & Giesel, K. (2018). Dynamical Properties of the Mukhanov-Sasaki Hamiltonian (Master thesis).
Zwicknagel, E.-A., Giesel, K., & Liegener, K. (2018). Expectation Values of Holonomy-Operators in Cosmological Coherent States for Loop Quantum Gravity (Bachelor thesis).
Giesel, K., & Herzog, A. (2018). Gauge invariant canonical cosmological perturbation theory with geometrical clocks in extended phase-space - A review and applications. International Journal of Modern Physics D, 27(8), 1830005. https://dx.doi.org/10.1142/S0218271818300057
Giesel, K., Herzog, A., & Singh, P. (2018). Gauge invariant variables for cosmological perturbation theory using geometrical clocks. Classical and Quantum Gravity, 35(15), 155012. https://dx.doi.org/10.1088/1361-6382/aacda2
Weigl, S., Giesel, K., & Liegener, K. (2018). Implications from Different Regularisations for the Canonically Quantised k=1 FLRW Spacetime (Bachelor thesis).
Matas, B., Giesel, K., & Kobler, M. (2018). The Lewis-Riesenfeld Invariant in the context of a Loop Quantum Cosmology quantisation (Bachelor thesis).
Giesel, K., & Oelmann, A. (2017). Comparison Between Dirac and Reduced Quantization in LQG-Models with Klein-Gordon Scalar Fields. Acta Physica Polonica B, Acta Phys.Polon.Supp.(10), 339-349.
Herzog, A., & Giesel, K. (2017). Geometrical Clocks in Cosmological Perturbation Theory (Master thesis).
Giesel, K., Laddha, A., Varadarajan, M., Bianchi, E., Oriti, D., Dittrich, B.,... Grain, J. (2017). Loop Quantum Gravity. The first 30 years. World Scientific.

Last updated on 2017-20-05 at 04:51