Andreas Maximilian Wahl



Organisation


Chair for Computer Science 6 (Data Management)
Professur für Informatik (Datenbanksysteme)



Project lead


OCEAN: Open and Collaborative Query-Driven Analytics
Prof. Dr.-Ing. Richard Lenz; Andreas Maximilian Wahl
(01/11/2013)


Publications (Download BibTeX)

Go to first page Go to previous page 1 of 3 Go to next page Go to last page

Wahl, A.M., Endler, G., Schwab, P.K., Rith, J., Herbst, S., & Lenz, R. (2018). A graph-based framework for analyzing SQL query logs. Association for Computing Machinery, Inc.
Wahl, A.M., Endler, G., Schwab, P., Herbst, S., Rith, J., & Lenz, R. (2018). Crossing an OCEAN of queries: Analyzing SQL query logs with OCEANLog. Association for Computing Machinery.
Wahl, A.M., Schwab, P., & Lenz, R. (2018). Minimally-Intrusive Augmentation of Data Science Workflows. Mannheim, DE.
Wahl, A.M., Sauerhammer, C., Schwab, P., Herbst, S., & Lenz, R. (2018). Query-Driven Data Profiling with OCEANProfile. Rio de Janeriro, BR.
Schwab, P., Wahl, A.M., Meyer-Wegener, K., & Matschinske, J.O. (2018). Towards Query-Driven Data Minimization. In Proc. Conf. "Lernen, Wissen, Daten, Analysen" (pp. 335-338). Mannheim, Germany, DE: CEUR-WS.
Wahl, A.M., & Lenz, R. (2017). Analyzing SQL Query Logs using Multi-Relational Graphs. In Proc. Conf. "Lernen, Wissen, Daten, Analysen". Rostock, Germany, DE: CEUR-WS.
Wahl, A.M., Endler, G., Schwab, P., Herbst, S., & Lenz, R. (2017). Anfrage-getriebener Wissenstransfer zur Unterstützung von Datenanalysten. Stuttgart, DE: Springer.
Wahl, A.M., Endler, G., Schwab, P., Herbst, S., & Lenz, R. (2017). Query-Driven Knowledge-Sharing for Data Integration and Collaborative Data Science. In New Trends in Databases and Information Systems. Nicosia, CY.
Wahl, A.M., Endler, G., Schwab, P., Herbst, S., & Lenz, R. (2017). We Can Query More than We Can Tell: Facilitating Collaboration Through Query-Driven Knowledge-Sharing. Portland, Oregon, US: ACM.
Wahl, A.M. (2016). A Minimally-Intrusive Approach for Query-Driven Data Integration Systems. In 2016 IEEE 32nd International Conference on Data Engineering Workshops (ICDEW) (pp. to appear). Helsinki: IEEE.

Last updated on 2016-21-11 at 09:13