Dr. Georg Hager



Organisation


Regionales Rechenzentrum Erlangen (RRZE)


Awards / Honours


2018 : 2018 Gauss Award
2018 : Gauss Award



Project lead


(SPP 1648: Software for Exascale Computing):
ESSEX - Equipping Sparse Solvers for Exascale
Dr. Georg Hager; Prof. Dr. Gerhard Wellein
(01/11/2012 - 30/06/2019)


Project member


SKALB: SKALB: Lattice-Boltzmann-Methoden für skalierbare Multi-Physik-Anwendungen
Prof. Dr. Gerhard Wellein
(01/01/2009 - 31/12/2011)


Publications (Download BibTeX)

Go to first page Go to previous page 1 of 8 Go to next page Go to last page

Laukemann, J., Hammer, J., Hofmann, J., Hager, G., & Wellein, G. (2018). Automated Instruction Stream Throughput Prediction for Intel and AMD Microarchitectures. In 2018 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS) (pp. 121-131). Dallas, TX, US: IEEE.
Kreutzer, M., Ernst, D., Bishop, A.R., Fehske, H., Hager, G., Nakajima, K., & Wellein, G. (2018). Chebyshev filter diagonalization on modern manycore processors and GPGPUs. Springer Verlag.
Shahzad, F., Thies, J., Kreutzer, M., Zeiser, T., Hager, G., & Wellein, G. (2018). CRAFT: A library for easier application-level Checkpoint/Restart and Automatic Fault Tolerance. IEEE Transactions on Parallel and Distributed Systems. https://dx.doi.org/10.1109/TPDS.2018.2866794
Wittmann, M., Hager, G., Janalik, R., Lanser, M., Klawonn, A., Rheinbach, O.,... Wellein, G. (2018). Multicore Performance Engineering of Sparse Triangular Solves Using a Modified Roofline Model. In 2018 30TH INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING (SBAC-PAD 2018) (pp. 233-241). Lyon, FR: NEW YORK: IEEE.
Hofmann, J., Hager, G., & Fey, D. (2018). On the Accuracy and Usefulness of Analytic Energy Models for Contemporary Multicore Processors. In High Performance Computing: 33rd International Conference, ISC High Performance 2018 (pp. 22-43). Frankfurt: Cham: Springer International Publishing.
Hofmann, J., Hager, G., Wellein, G., & Fey, D. (2017). An Analysis of Core- and Chip-Level Architectural Features in Four Generations of Intel Server Processors. In High Performance Computing. ISC 2017. Lecture Notes in Computer Science, vol 10266. Frankfurt: Cham: Springer.
Galgon, M., Krämer, L., Lang, B., Alvermann, A., Fehske, H., Pieper, A.,... Thies, J. (2017). Improved coefficients for polynomial filtering in ESSEX. (pp. 63-79). Springer Verlag.
Hammer, J., Eitzinger, J., Hager, G., & Wellein, G. (2017). Kerncraft: A Tool for Analytic Performance Modeling of Loop Kernels. In Niethammer C, Gracia J, Hilbrich T, Knüpfer A, Resch MM, Nagel WE (Eds.), Tools for High Performance Computing 2016 (pp. 1--22). Stuttgart, Germany: Cham: Springer International Publishing.
Röhl, T., Eitzinger, J., Hager, G., & Wellein, G. (2017). LIKWID monitoring stack: A flexible framework enabling job specific performance monitoring for the masses. (pp. 781-784). Institute of Electrical and Electronics Engineers Inc..
Hofmann, J., Fey, D., Riedmann, M., Eitzinger, J., Hager, G., & Wellein, G. (2017). Performance analysis of the Kahan-enhanced scalar product on current multi-core and many-core processors. Concurrency and Computation-Practice & Experience, 29(9). https://dx.doi.org/10.1002/cpe.3921

Last updated on 2016-05-05 at 05:29